4,334 research outputs found

    Integration of an object formalism within a hybrid dynamic simulation environment

    Get PDF
    PrODHyS is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of systems engineering. Its major characteristic is its ability to simulate processes described by a hybrid model. In this framework, this paper focuses on the "Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use of this formalism is illustrated through a didactic example relating to the field of Chemical Process System Engineering (PSE)

    Dynamic hybrid simulation of batch processes driven by a scheduling module

    Get PDF
    Simulation is now a CAPE tool widely used by practicing engineers for process design and control. In particular, it allows various offline analyses to improve system performance such as productivity, energy efficiency, waste reduction, etc. In this framework, we have developed the dynamic hybrid simulation environment PrODHyS whose particularity is to provide general and reusable object-oriented components dedicated to the modeling of devices and operations found in chemical processes. Unlike continuous processes, the dynamic simulation of batch processes requires the execution of control recipes to achieve a set of production orders. For these reasons, PrODHyS is coupled to a scheduling module (ProSched) based on a MILP mathematical model in order to initialize various operational parameters and to ensure a proper completion of the simulation. This paper focuses on the procedure used to generate the simulation model corresponding to the realization of a scenario described through a particular scheduling

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Petri Net as a Manufacturing System Scheduling Tool

    Get PDF

    Modelling and simulation of functional product system availability and support costs

    Get PDF
    Functional Products (FP), total offers or product service systems that comprise of both Hardware (HW) and Support Services (SS) sold as an integrated offering under an availability guarantee are becoming increasing popular in industry. This paper addresses, through modelling and simulation the challenge faced by suppliers in developing an integrated HW and SS design to produce an FP which meets contracted availability. A recently published framework specified how an integrated model hardware and service support system model could be used to obtain functional availability predictions and perform simulation driven functional product development. This paper presents the first example of an integrated functional product model. It uses fault tree, Petri net and discrete event simulation techniques to enable the prediction of functional product availability and support costs. Such predictions are used here to evaluate and compare different service support system designs
    • 

    corecore