7,179 research outputs found

    Piezoelectric wind power harnessing – an overview

    Get PDF
    As fossil energy resources deplete, wind energy gains ever more importance. Recently, piezoelectric energy harvesting methods are emerging with the advancements in piezoelectric materials and its storage elements. Piezoelectric materials can be utilized to convert kinetic energy to electrical energy. Utilization of piezoelectric wind harvesting is a rather new means to convert renewable wind energy to electricity. Piezoelectric generators are typically low cost and easy to maintain. This work illustrates an overview of piezoelectric wind harvesting technology. In wind harvesting, piezoelectric material choice is of the first order of importance. Due to their strain rate, robustness is a concern. For optimum energy harvesting efficiency resonant frequency of the selected materials and overall system configuration plays important role. In this work, existing piezoelectric wind generators are grouped and presented in following categories: leaf type, rotary type, rotary to linear type and beam type wind generators

    Energy harvesting technologies and devices from vehicular transit and natural sources on roads for a sustainable transport: state-of-the-art analysis and commercial solutions

    Get PDF
    The roads we travel daily are exposed to several energy sources (mechanical load, solar radiation, heat, air movement, etc.), which can be exploited to make common systems and apparatus for roadways (i.e., lighting, video surveillance, and traffic monitoring systems) energetically autonomous. For decades, research groups have developed many technologies able to scavenge energy from the said sources related to roadways: electromagnetism, piezoelectric and triboelectric harvesters for the cars’ stress and vibrations, photovoltaic modules for sunlight, thermoelectric solutions and pyroelectric materials for heat and wind turbines optimized for low-speed winds, such as the ones produced by moving vehicles. Thus, this paper explores the existing technologies for scavenging energy from sources available on roadways, both natural and related to vehicular transit. At first, to contextualize them within the application scenario, the available energy sources and transduction mechanisms were identified and described, arguing the main requirements that must be considered for developing harvesters applicable on roadways. Afterward, an overview of energy harvesting solutions presented in the scientific literature to recover energy from roadways is introduced, classifying them according to the transduction method (i.e., piezoelectric, triboelectric, electromagnetic, photovoltaic, etc.) and proposed system architecture. Later, a survey of commercial systems available on the market for scavenging energy from roadways is introduced, focusing on their architecture, performance, and installation methods. Lastly, comparative analyses are offered for each device category (i.e., scientific works and commercial products), providing insights to identify the most promising solutions and technologies for developing future self-sustainable smart roads

    Breaking Barriers to Renewable Energy Production in the North American Arctic

    Get PDF
    As climate change continues to affect our lives, the communities at the northern extremes of our world have witnessed the changes most profoundly. In the Arctic, where climate change is melting permafrost and causing major shoreline erosion, remote communities in Alaska and northern Canada are particularly vulnerable. Furthermore, these communities have limited access to electrical grids and bear oppressive energy costs relying on diesel generators. While some communities have started to incorporate renewable energy into their hamlets and villages, progress has generally been limited with the notable exception of Canada’s Northwest Territories and some coastal communities in western Alaska. During its latest stint as chair of the Arctic Council, the United States outlined community renewable energy in the Arctic as one of its primary goals. This Note focuses on regulatory and practical policy solutions to make that goal possible. It draws on examples from industrialized countries, such as Canada and the United Kingdom, as well as examples from developing countries, such as India and Peru, to examine solutions for the technical, economic, regulatory, and community engagement problems that Arctic communities in Alaska face when setting up new energy projects. Additionally, this Note describes the current political structure of Alaskan villages under the Alaska Native Claims Settlement Act and argues that Alaska Native Corporations should play a role in developing clean, cheap energy sources for their shareholders. Finally, this Note argues that public-private partnerships, like the non-profit Arctic Energy Alliance in the Northwest Territories, shows that clean, renewable energy projects for rural Arctic villages are possible throughout the Arctic. This Note draws lessons from other communities throughout the world and attempts to apply them to the unique situations that remote northern Alaska communities face regarding access to clean, renewable energy

    Low-carbon energy: a roadmap

    Get PDF
    Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be met without fossil fuels and by adding only minimally to the cost of energy services The world is now in the early stages of an energy revolution that over the next few decades could be as momentous as the emergence of oiland electricity-based economies a century ago. Double-digit market growth, annual capital flows of more than $100 billion, sharp declines in technology costs, and rapid progress in the sophistication and effectiveness of government policies all herald a promising new energy era. Advanced automotive, electronics, and buildings systems will allow a substantial reduction in carbon dioxide (CO2) emissions, at negative costs once the savings in energy bills is accounted for. The savings from these measures can effectively pay for a significant portion of the additional cost of advanced renewable energy technologies to replace fossil fuels, including wind, solar, geothermal, and bioenergy. Resource estimates indicate that renewable energy is more abundant than all of the fossil fuels combined, and that well before mid-century it will be possible to run most national electricity systems with minimal fossil fuels and only 10 percent of the carbon emissions they produce today. The development of smart electricity grids, the integration of plug-in electric vehicles, and the addition of limited storage capacity will allow power to be provided without the baseload plants that are the foundation of today's electricity systems. Recent climate simulations conclude that CO2 emissions will need to peak within the next decade and decline by at least 50 to 80 percent by 2050. This challenge will be greatly complicated by the fact that China, India, and other developing countries are now rapidly developing modern energy systems. The only chance of slowing the buildup of CO2 concentrations soon enough to avoid catastrophic climate change that could take centuries to reverse is to transform the energy economies of industrial and developing countries almost simultaneously. This would have seemed nearly impossible a few years ago, but since then, the energy policies and markets of China and India have begun to change rapidly -- more rapidly than those in many industrial countries. Renewable and efficiency technologies will allow developing countries to increase their reliance on indigenous resources and reduce their dependence on expensive and unstable imported fuelsAround the world, new energy systems could become a huge engine of industrial development and job creation, opening vast new economic opportunities. Developing countries have the potential to "leapfrog" the carbon-intensive development path of the 20th century and go straight to the advanced energy systems that are possible today. Improved technology and high energy prices have created an extraordinarily favorable market for new energy systems over the past few years. But reaching a true economic tipping point will require innovative public policies and strong political leadership

    The Removal of Lead-Based Paint from Steel Bridges

    Get PDF
    The purpose of this study was to assist the Department of Highways in conducting bridge-painting operations involving removal of existing lead-based paint. Pertinent state and Federal regulations affecting generation of hazardous wastes, limiting environmental pollution and protecting public and worker safety were obtained and reviewed.State highway agendas were surveyed relative to how they conducted maintenance bridge painting involving lead-based. paints and comply with applicable regulations. Information from the painting industry related to sale removal of lead-based paints was also reviewed. Based upon the reviews of applicable regulations, operations of other state highway agencies and painting industry practices, the best demonstrated available technology to use in removing lead-based paints from bridges was identified. The key technologies incorporated the use of: 1) containment enclosures over the open abrasive blasting, 2) recyclable abrasives and 3) closed material-handling systems to move abrasive-blasting wastes. The Study Advisory Committee determined that the Best Demonstrated Available Technology would be applied to all bridge maintenance painting operations involving the full removal of lead-based paints. The Committee decided that the Department of Highways would limit painting contractors\u27 work to painting-related activities. The Department employ a consultant to monitor activities related to the generation of hazardous wastes. The consultant would also inspect the contractor\u27s painting work. The Department would also employ a contractor to transport treat and dispose hazardous wastes generated by abrasive blasting. Three documents were prepared to facilitate this work including: 1) an experimental special provision for bridge maintenance painting, 2) a invitation-to-bid for hazardous waste transport and disposal, and 3) a consultant services contract for environmental monitoring, waste management and inspection of contractor painting operations

    Charting Our Own Course: Today’s Challenges, Tomorrow’s Opportunities, December 2008

    Get PDF
    The Office of Energy Independence presents Iowa’s second annual energy independence plan, which highlights accomplishments achieved thus far and makes recommendations for the coming year. This plan shows that Iowa has made significant progress in building the foundation for reaching energy independence in just the past year. Continued investment and further efforts will enable Iowa to push toward even greater advances, while creating new jobs and diversifying local economies. With those aims in mind, the state has been investing extensively in the new energy economy. One important example is the Iowa Power Fund, an annual appropriation from the Iowa General Assembly administered by the Office of Energy Independence. In less than one year, the Office has received more than 160 project applications totaling more than $308 million in requests. The projects approved thus far will help advance Iowa’s wind and solar industries, foster new energy efficiency practices, and develop the bio fuels industry for a more economically and environmentally sustainable future. Iowa’s position as a leader in the new energy economy is dependent on the success of the Power Fund, and on the success of this plan. This plan clearly states that Iowa must boldly pursue a strong position in the emerging energy economy worldwide
    corecore