40,186 research outputs found

    EKSPLORASI MATERI KOMPUTER DENGAN PENDEKATAN AUGMENTED REALITY UNTUK SISWA SEKOLAH DASAR

    Get PDF
    Technological developments have resulted in the re-emergence of informatics subjects in the independent curriculum with updates to the learning system. Based on findings in the field, many students showed a lack of understanding of computer components during learning sessions and considered the material boring, so an effort was made to solve the problem by developing augmented reality-based learning media. The research method used uses RnD with the ADDIE model. The results obtained were 95% that the material was in accordance with the expected learning outcomes and relevant learning objectives. In addition, it was found that the media's visual appeal, program reliability, ease of use, efficiency, effectiveness as a substitute for teaching aids, and convenience of Augmented Reality-based learning media have all been successfully achieved

    Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality

    Get PDF
    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Updating the art history curriculum: incorporating virtual and augmented reality technologies to improve interactivity and engagement

    Get PDF
    Master's Project (M.Ed.) University of Alaska Fairbanks, 2017This project investigates how the art history curricula in higher education can borrow from and incorporate emerging technologies currently being used in art museums. Many art museums are using augmented reality and virtual reality technologies to transform their visitors' experiences into experiences that are interactive and engaging. Art museums have historically offered static visitor experiences, which have been mirrored in the study of art. This project explores the current state of the art history classroom in higher education, which is historically a teacher-centered learning environment and the learning effects of that environment. The project then looks at how art museums are creating visitor-centered learning environments; specifically looking at how they are using reality technologies (virtual and augmented) to transition into digitally interactive learning environments that support various learning theories. Lastly, the project examines the learning benefits of such tools to see what could (and should) be implemented into the art history curricula at the higher education level and provides a sample section of a curriculum demonstrating what that implementation could look like. Art and art history are a crucial part of our culture and being able to successfully engage with it and learn from it enables the spread of our culture through digital means and of digital culture

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
    corecore