30,325 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Augmented reality supported work instructions for onsite facility maintenance

    Get PDF
    During the operation and maintenance phase of buildings operators need to perform on site maintenance activities to prevent functional failures of technical equipment. As this phase is the longest and most expensive one respective improvements can significantly reduce the overall lifecycle budget. Based on their previous work, in this paper the authors present an Augmented Reality (AR) based concept and implementation to support mobile and onsite maintenance activities by (1) preparing and generating AR work order instructions based on Product Lifecycle Management (PLM) information, (2) using these to aid the actual onsite maintenance job using hybrid 3D tracking, and (3) creating enhanced and context-related maintenance service reports to be fed back to the PLM system. Preliminary results reveal the potential of the proposed solution, but also leave room for future improvements

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    Development and implementation of a mobile AR-Based assistance system on the Android-platform for the SmartFactory kl

    Full text link
    Campos García, R. (2011). Development and implementation of a mobile AR-Based assistance system on the Android-platform for the SmartFactory kl. http://hdl.handle.net/10251/11632.Archivo delegad

    Current trends on ICT technologies for enterprise information s²ystems

    Get PDF
    The proposed paper discusses the current trends on ICT technologies for Enterprise Information Systems. The paper starts by defining four big challenges of the next generation of information systems: (1) Data Value Chain Management; (2) Context Awareness; (3) Interaction and Visualization; and (4) Human Learning. The major contributions towards the next generation of information systems are elaborated based on the work and experience of the authors and their teams. This includes: (1) Ontology based solutions for semantic interoperability; (2) Context aware infrastructures; (3) Product Avatar based interactions; and (4) Human learning. Finally the current state of research is discussed highlighting the impact of these solutions on the economic and social landscape

    A Framework for Mobile Augmented Reality in Urban Maintenance

    Get PDF
    Mobile handheld devices such as smartphones have become increasingly powerful in modern times. Because of this, there has been a surge in 3D graphics-heavy mobile applications that aim to provide immersive experiences. An example of this phenomenon would be Augmented Reality (AR) applications, which have been increasingly popular and offer a wide array of use-cases. The ability to merge the real world with the virtual world seamlessly using the built-in camera of the smartphone brings a whole new world of possibilities, which makes it interesting to explore how such a technology could be used to solve real-world problems. This dissertation focuses on applying this technology in the field of urban maintenance. To do so, a mobile AR application was developed, designed to be used by urban maintenance workers as a field-assistance tool. Using any standard smartphone camera, the developed system can accurately detect any equipment and augment it with relevant information and step-by-step instructions on how to do any required maintenance jobs. Alongside this mobile application, a desktop application was also developed with the purposes of creating and authoring the data and augmentations that should be displayed during a given job, called Archer. Lastly, this dissertation proposes a novel approach to automatically detect and minimize the amount of points (checkpoints) at which the application will ask the user to perform a new equipment recognition, which are useful in order to maintain tracking stability as the user modifies the real-world object during the course of the job. The experiments and user tests conducted during the final stages of this dissertation demonstrate the accuracy and practicality of the developed systems, proving that they can effectively be used to greatly improve the workflow of urban maintenance workers.Dispositivos móveis tais como os smartphones têm-se tornado cada vez mais poderosos nos tempos modernos. Como tal, tem havido um grande aumento na quantidade de aplicações móveis 3D com o intuito de fornecer experiências imersivas. Um exemplo desse fenómeno são as aplicações de Realidade Aumentada (RA), as quais se têm tornado cada vez mais populares, oferecendo um vasto leque de casos de uso. A habilidade de fundir o mundo real com o mundo virtual através da câmara de um smartphone traz todo um novo mundo de possibilidades, o que torna interessante a exploração de como esta tecnologia pode ser usada para resolver problemas no mundo real. Esta dissertação foca-se na aplicação desta tecnologia na área da manutenção urbana. Nesse sentido, foi desenvolvida uma aplicação móvel de RA projetada para ser usada como uma ferramenta de assistência em campo por trabalhadores de manutenção urbana. Usando qualquer câmara de smartphone, este sistema consegue detetar qualquer equipamento de forma precisa e aumentá-lo digitalmente com informação relevante e instruções passo-a-passo de como fazer qualquer trabalho de manutenção. Juntamente com esta aplicação móvel, também foi desenvolvida uma aplicação para desktop — chamada Archer — com o intuito de criar e validar os dados e os objetos digitais que serão apresentados na aplicação mobile durante o curso de um trabalho de manutenção. Por fim, esta dissertação apresenta uma nova solução para a deteção e minimização automática dos pontos (checkpoints) em que a aplicação móvel deverá pedir ao utilizador para efetuar um novo reconhecimento do equipamento, os quais são úteis para manter um tracking fiável e estável à medida que o utilizador vai modificando o equipamento durante um trabalho. As experiências e testes com utilizadores efetuados na fase final desta dissertação demonstram a precisão e praticidade dos sistemas desenvolvidos, provando que estes podem efetivamente ser usados para melhorar o workflow dos trabalhadores de manutenção urbana
    corecore