4,871 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    A Dynamic Information-Based Parking Guidance for Megacities considering Both Public and Private Parking

    Get PDF
    The constantly increasing number of cars in the megacities is causing severe parking problems. To resolve this problem, many cities adopt parking guidance system as a part of intelligent transportation system (ITS). However, the current parking guidance system stays in its infant stage since the obtainable information is limited. To enhance parking management in the megacity and to provide better parking guidance to drivers, this study introduces an intelligent parking guidance system and proposes a new methodology to operate it. The introduced system considers both public parking and private parking so that it is designed to maximize the use of spatial resources of the city. The proposed methodology is based on the dynamic information related parking in the city and suggests the best parking space to each driver. To do this, two kinds of utility functions which assess parking spaces are developed. Using the proposed methodology, different types of parking management policies are tested through the simulation. According to the experimental test, it is shown that the centrally managed parking guidance can give better results than individually preferred parking guidance. The simulation test proves that both a driver???s benefits and parking management of a city from various points of view can be improved by using the proposed methodology

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    An intelligent car park management system based on wireless sensor networks

    Get PDF
    Internet and Mobile Computing Lab, Department of ComputingRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    The design and implementation of a smart-parking system for Helsinki Area

    Get PDF
    The strain on the parking infrastructure for the general public has significantly grown as a result of the ever rising number of vehicles geared by the rapid population growth in urban areas. Consequently, finding a vacant parking space has become quite a challenging task, especially at peak hours. Drivers have to cycle back and forth a number of times before they finally find where to park. This leads to increased fuel consumption, air pollution, and increased likelihood of causing accidents, to mention but a few. Paying for the parking is not straight forward either, as the ticket machines, on top of being located at a distance, in many times, they have several payment methods drivers must prepare for. A system therefore, that would allow drivers to check for the vacant parking places before driving to a busy city, takes care of the parking fee for exact time they have used, manages electronic parking permit, is the right direction towards toppling these difficulties. The main objective of this project was to design and implement a system that would provide parking occupancy estimation, parking fee payment method, parking permit management and parking analytics for the city authorities. The project had three phases. The first and the second phases used qualitative approaches to validate our hypotheses about parking shortcoming in Helsinki area and the recruitment of participants to the pilot of the project, respectively. The third phase involved the design, implementation and installation of the system. The other objective was to study the challenges a smart parking system would face at different stages of its life cycle. The objectives of the project were achieved and the considered assumption about the challenges associated with parking in a busy city were validated. A smart parking system will allow drivers to check for available parking spaces beforehand, they are able to pay for the parking fee, they can get electronic parking permits, and the city authority can get parking analytics for the city plannin

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    corecore