34,082 research outputs found

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Architecture independent environment for developing engineering software on MIMD computers

    Get PDF
    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Exploring the Duality between Product and Organizational Architectures: A Test of the Mirroring Hypothesis

    Get PDF
    A variety of academic studies argue that a relationship exists between the structure of an organization and the design of the products that this organization produces. Specifically, products tend to "mirror" the architectures of the organizations in which they are developed. This dynamic occurs because the organization's governance structures, problem solving routines and communication patterns constrain the space in which it searches for new solutions. Such a relationship is important, given that product architecture has been shown to be an important predictor of product performance, product variety, process flexibility and even the path of industry evolution. We explore this relationship in the software industry. Our research takes advantage of a natural experiment, in that we observe products that fulfill the same function being developed by very different organizational forms. At one extreme are commercial software firms, in which the organizational participants are tightly-coupled, with respect to their goals, structure and behavior. At the other, are open source software communities, in which the participants are much more loosely-coupled by comparison. The mirroring hypothesis predicts that these different organizational forms will produce products with distinctly different architectures. Specifically, loosely-coupled organizations will develop more modular designs than tightly-coupled organizations. We test this hypothesis, using a sample of matched-pair products. We find strong evidence to support the mirroring hypothesis. In all of the pairs we examine, the product developed by the loosely-coupled organization is significantly more modular than the product from the tightly-coupled organization. We measure modularity by capturing the level of coupling between a product's components. The magnitude of the differences is substantial - up to a factor of eight, in terms of the potential for a design change in one component to propagate to others. Our results have significant managerial implications, in highlighting the impact of organizational design decisions on the technical structure of the artifacts that these organizations subsequently develop.Organizational Design, Product Design, Architecture, Modularity, Open-Source Software.

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Towards a Swiss National Research Infrastructure

    Full text link
    In this position paper we describe the current status and plans for a Swiss National Research Infrastructure. Swiss academic and research institutions are very autonomous. While being loosely coupled, they do not rely on any centralized management entities. Therefore, a coordinated national research infrastructure can only be established by federating the various resources available locally at the individual institutions. The Swiss Multi-Science Computing Grid and the Swiss Academic Compute Cloud projects serve already a large number of diverse user communities. These projects also allow us to test the operational setup of such a heterogeneous federated infrastructure
    • …
    corecore