114 research outputs found

    A first metadata schema for learning analytics research data management

    Get PDF
    Forschungsdaten bilden die Grundlage für wissenschaftliches Arbeiten und um neue Erkenntnisse zu gewinnen. Learning Analytics ist die Wissenschaft zur Verbesserung des Lernens in verschiedenen Bereichen des Bildungssektors, doch obwohl die Datenerhebung zum größten Teil mittels computer-gestützter Verfahren durchgeführt wird, besitzt die Disziplin zum jetzigen Zeitpunkt noch keine Forschungsdatenmanagementkultur oder -konzepte. Wie jede Forschungsdisziplin hat Learning Analytics ihre Eigenheiten, die für die Erstellung von Forschungsdatenmanagementkonzepten, insbesondere für die Generalisierung von Daten und die Modellierung eines Metadatenmodells, wichtig sind. Die folgende Arbeit präsentiert Ergebnisse einer Anforderungsanalyse für Learning Analytics, um relevante Elemente für ein Metadatenschema zu identifizieren. Zur Erreichung dieses Ziels führten wir zunächst eine Literaturrecherche durch, gefolgt von einer Untersuchung unserer eigenen Forschung an Softwareumgebungen zur Evaluierung von kollaborativen Programmierszenarien an zwei Hochschulstandorten. Aus den Ergebnissen lassen sich ein disziplinspezifischer wissenschaftlicher Workflow sowie ein fachspezifisches Objektmodell ableiten, das alle erforderlichen Merkmale für die Entwicklung eines für Learning Analytics spezifischen Metadatenmodells für die Nutzung von Datenbeständen aufzeigt.In most cases, research data builds the ground for scientific work and to gain new knowledge. Learning analytics is the science to improve learning in different fields of the educational sector. Even though it is a data-driven science, there is no research data management culture or concepts yet. As every research discipline, learning analytics has its own characteristics, which are important for the creation of research data management concepts, in particular for generalization of data and modeling of a metadata model. The following work presents our results of a requirements analysis for learning analytics, in order to identify relevant elements for a metadata schema. To reach this goal, we conducted a literature survey followed by an analysis of our own research about frameworks for evaluation of collaborative programming scenarios from two universities. With these results, we present a discipline-specific scientific workflow, as well as a subject-specific object model, which lists all required characteristics for the development of a learning analytics specific metadata model for data repository usage

    Reprodutibilidade e reuso de experimentos em eScience : workflows, ontologias e scripts

    Get PDF
    Orientadores: Claudia Maria Bauzer Medeiros, Yolanda GilTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Scripts e Sistemas Gerenciadores de Workflows Científicos (SGWfC) são abordagens comumente utilizadas para automatizar o fluxo de processos e análise de dados em experimentos científicos computacionais. Apesar de amplamente usados em diversas disciplinas, scripts são difíceis de entender, adaptar, reusar e reproduzir. Por esta razão, diversas soluções têm sido propostas para auxiliar na reprodutibilidade de experimentos que utilizam ambientes baseados em scripts. Porém, estas soluções não permitem a documentação completa do experimento, nem ajudam quando outros cientistas querem reusar apenas parte do código do script. SGWfCs, por outro lado, ajudam na documentação e reuso através do suporte aos cientistas durante a modelagem e execução dos seus experimentos, que são especificados e executados como componentes interconectados (reutilizáveis) de workflows. Enquanto workflows são melhores que scripts para entendimento e reuso dos experimentos, eles também exigem documentação adicional. Durante a modelagem de um experimento, cientistas frequentemente criam variantes de workflows, e.g., mudando componentes do workflow. Reuso e reprodutibilidade exigem o entendimento e rastreamento da proveniência das variantes, uma tarefa que consome muito tempo. Esta tese tem como objetivo auxiliar na reprodutibilidade e reuso de experimentos computacionais. Para superar estes desafios, nós lidamos com dois problemas de pesquisas: (1) entendimento de um experimento computacional, e (2) extensão de um experimento computacional. Nosso trabalho para resolver estes problemas nos direcionou na escolha de workflows e ontologias como respostas para ambos os problemas. As principais contribuições desta tese são: (i) apresentar os requisitos para a conversão de experimentos baseados em scripts em experimentos reprodutíveis; (ii) propor uma metodologia que guia o cientista durante o processo de conversão de experimentos baseados em scripts em workflow research objects reprodutíveis. (iii) projetar e implementar funcionalidades para avaliação da qualidade de experimentos computacionais; (iv) projetar e implementar o W2Share, um arcabouço para auxiliar a metodologia de conversão, que explora ferramentas e padrões que foram desenvolvidos pela comunidade científica para promover o reuso e reprodutibilidade; (v) projetar e implementar o OntoSoft-VFF, um arcabouço para captura de informação sobre software e componentes de workflow para auxiliar cientistas a gerenciarem a exploração e evolução de workflows. Nosso trabalho é apresentado via casos de uso em Dinâmica Molecular, Bioinformática e Previsão do TempoAbstract: Scripts and Scientific Workflow Management Systems (SWfMSs) are common approaches that have been used to automate the execution flow of processes and data analysis in scientific (computational) experiments. Although widely used in many disciplines, scripts are hard to understand, adapt, reuse, and reproduce. For this reason, several solutions have been proposed to aid experiment reproducibility for script-based environments. However, they neither allow to fully document the experiment nor do they help when third parties want to reuse just part of the code. SWfMSs, on the other hand, help documentation and reuse by supporting scientists in the design and execution of their experiments, which are specified and run as interconnected (reusable) workflow components (a.k.a. building blocks). While workflows are better than scripts for understandability and reuse, they still require additional documentation. During experiment design, scientists frequently create workflow variants, e.g., by changing workflow components. Reuse and reproducibility require understanding and tracking variant provenance, a time-consuming task. This thesis aims to support reproducibility and reuse of computational experiments. To meet these challenges, we address two research problems: (1) understanding a computational experiment, and (2) extending a computational experiment. Our work towards solving these problems led us to choose workflows and ontologies to answer both problems. The main contributions of this thesis are thus: (i) to present the requirements for the conversion of script to reproducible research; (ii) to propose a methodology that guides the scientists through the process of conversion of script-based experiments into reproducible workflow research objects; (iii) to design and implement features for quality assessment of computational experiments; (iv) to design and implement W2Share, a framework to support the conversion methodology, which exploits tools and standards that have been developed by the scientific community to promote reuse and reproducibility; (v) to design and implement OntoSoft-VFF, a framework for capturing information about software and workflow components to support scientists manage workflow exploration and evolution. Our work is showcased via use cases in Molecular Dynamics, Bioinformatics and Weather ForecastingDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2013/08293-7, 2014/23861-4, 2017/03570-3FAPES

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Towards Universally Designed Assistive Technology E-Learning

    Get PDF
    The aim of this dissertation is to provide Assistive Technology (AT) professionals involved in the area of education and training with a set of reusable technological tools and techniques that will enable them to increase the reach, efficiency, effectiveness and accessibility of their training through online delivery. There are a number of broadly accepted reasons why an organisation in any field might choose to make training available online or partially online (blended) rather than relying on traditional face to face methods. Of the four considered here and mentioned above, accessibility is the biggest concern in the context of AT. It is essential that an AT course follows accessibility best practice and in terms of education this means adhering closely to the principles of Universal Design for Learning (UDL). Through an extensive literature review the intrinsic properties of AT that might influence its delivery as e-Learning will be examined, followed by a review of previous AT education initiatives. A suitable Learning Management System (LMS) will then be selected and the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) model will be used to develop initial pilot modules. The evaluation of these pilot modules will take the form of a detailed questionnaire issued to course participants and will be supplemented by an examination of the user data captured by the LMS. There will also be a further examination of the pilot modules against the UDL checkpoints. From these findings the design process will be modified and an improved design methodology will be proposed. This improved design methodology and supporting documentation will help AT educators to identify and utilise a range of reusable tools to create Universally Designed Learning Objects that will enable them, as the experts in the field, to successfully transfer their expertise from the classroom to an online medium. On completion, the improved design methodology will be offered back to AT professionals for expert evaluation. This evaluation will be documented and will inform further work including the building of UDL AT Learning Objects and the creation of an AT Learning Object Repository where the resulting learning objects can be easily accessed for reuse. Key words: Assistive technology, e

    Technologies for a FAIRer use of Ocean Best Practices

    Get PDF
    The publication and dissemination of best practices in ocean observing is pivotal for multiple aspects of modern marine science, including cross-disciplinary interoperability, improved reproducibility of observations and analyses, and training of new practitioners. Often, best practices are not published in a scientific journal and may not even be formally documented, residing solely within the minds of individuals who pass the information along through direct instruction. Naturally, documenting best practices is essential to accelerate high-quality marine science; however, documentation in a drawer has little impact. To enhance the application and development of best practices, we must leverage contemporary document handling technologies to make best practices discoverable, accessible, and interlinked, echoing the logic of the FAIR data principles [1]

    Purdue Contribution of Fusion Simulation Program

    Full text link

    Developing Reusable Portals for Scripted Scientific Codes

    Get PDF
    A new portal for running scientific numerical codes on the Grid is presented. Particular emphasis is placed on portlet reusable and portability. We find that the JSR-168 standard is adequate for creating portable single portlets. For portals consisting on many portlets we present a simple, portable communication system. For Grid-based portlets, coupling to a specific portlet container or service architecture is difficult to avoid. Strategies for avoiding such coupling, and future directions in shared portlet development are outlined
    corecore