7,981 research outputs found

    Developing an ontology of mathematical logic

    Get PDF
    An ontology provides a mechanism to formally represent a body of knowledge. Ontologies are one of the key technologies supporting the Semantic Web and the desire to add meaning to the information available on the World Wide Web. They provide the mechanism to describe a set of concepts, their properties and their relations to give a shared representation of knowledge. The MALog project are developing an ontology to support the development of high-quality learning materials in the general area of mathematical logic. This ontology of mathematical logic will form the basis of the semantic architecture allowing us to relate different learning objects and recommend appropriate learning paths. This paper reviews the technologies used to construct the ontology, the use of the ontology to support learning object development and explores the potential future use of the ontology

    Ontology Building of Manufacturing Quality Knowledge for Design Decision Support

    Get PDF
    This work was funded by National Natural Science Foundation of China (No: 70472066, 70771091), the project of Bureau of Science, Technology and Industry for National Defence, China (No. Z142008A001), the NPU Foundation for Humanities, Social Science, and Management Science Development (No. RW200817), which are gratefully acknowledged.Manufacturing knowledge on product quality is a kind of typical knowledge for supporting design decisions. In order to clearly identify and understand design decisions and their knowledge needs on manufacturing quality, an ontology of design decisions and manufacturing quality knowledge is developed. The methodology and tool used for the development of the proposed ontology is firstly introduced. The design decisions are organized along with five main design phases ranging from planning and task clarification, conceptual design, embodiment design to detail design. The knowledge needs of different design decisions, especially on the manufacturing quality knowledge, are analyzed through competition questions. Then, the ontology is built in the form of a hierarchical structure through the proposed methodology and ontology editor. Based on the developed ontology, further instances of the classes in the ontology can be filled as detailed knowledge, and can be accumulated for further construction of knowledge base

    An Ontology Approach for Knowledge Acquisition and Development of Health Information System (HIS)

    Get PDF
    This paper emphasizes various knowledge acquisition approaches in terms of tacit and explicit knowledge management that can be helpful to capture, codify and communicate within medical unit. The semantic-based knowledge management system (SKMS) supports knowledge acquisition and incorporates various approaches to provide systematic practical platform to knowledge practitioners and to identify various roles of healthcare professionals, tasks that can be performed according to personnel’s competencies, and activities that are carried out as a part of tasks to achieve defined goals of clinical process. This research outcome gives new vision to IT practitioners to manage the tacit and implicit knowledge in XML format which can be taken as foundation for the development of information systems (IS) so that domain end-users can receive timely healthcare related services according to their demands and needs

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    Symbolic modeling of structural relationships in the Foundational Model of Anatomy

    Get PDF
    The need for a sharable resource that can provide deep anatomical knowledge and support inference for biomedical applications has recently been the driving force in the creation of biomedical ontologies. Previous attempts at the symbolic representation of anatomical relationships necessary for such ontologies have been largely limited to general partonomy and class subsumption. We propose an ontology of anatomical relationships beyond class assignments and generic part-whole relations and illustrate the inheritance of structural attributes in the Digital Anatomist Foundational Model of Anatomy. Our purpose is to generate a symbolic model that accommodates all structural relationships and physical properties required to comprehensively and explicitly describe the physical organization of the human body

    Study on thermal model for calculating transformer hot Spot temperature

    Get PDF
    A power transformer is a static piece of apparatus with two or more windings which, by electromagnetic induction, transforms a system of alternating voltage and current into another system of voltage and current usually of different values and at same frequency for the purpose of transmitting electrical power. The hot spot temperature depends on instantaneous load and ambient temperature, winding design and also cooling model. There are two possible methods for hotspot temperature determination. The first method is to measure the hot spot temperature using a fiber optic, and other is to calculation the hotspot temperature using transformer thermal models. It was noticed that the hot spot temperature rise over top oil temperature due to load changes is a function depending on time as well as the transformer loading (overshoot time dependent function). It has also been noticed that the top oil temperature time constant is shorter than the time constant suggested by the present IEC loading guide, especially in cases where the oil is guided through the windings in a zigzag pattern for the ONAN and ONAF cooling modes. This results in winding hottest spot temperatures higher than those predicted by the loading guides during transient states after the load current increases, before the corresponding steady states have been reached. This thesis presents more accurate temperature calculation methods taking into account the findings mentioned above. The models are based on heat transfer theory, application of the lumped capacitance method, the thermal-electrical analogy and definition of nonlinear thermal resistances at different locations within a power transformer. The methods presented in this thesis take into account all oil physical parameters change and loss variation with temperature. In addition, the proposed equations are used to estimate the equivalent thermal capacitances of the transformer oil for different transformer designs and winding-oil circulations. The models are validated using experimental results, which have been obtained from the normal heat run test performed by the transformer manufacturer at varying load current on a 250-MVA-ONAFcooled unit, a 400-MVA-ONAF-cooled unit and a 2500-KVA-ONAN-cooled unit. The results are also compared with the IEC 60076-7:2005 loading guide method. Keywords: power transformers, hot spot temperature, top oil temperature, non-linear therma

    The devices, experimental scaffolds, and biomaterials ontology (DEB): a tool for mapping, annotation, and analysis of biomaterials' data

    Get PDF
    The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.Preprin
    • …
    corecore