1,243 research outputs found

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Proceedings of the Automated Reasoning Workshop (ARW 2019)

    Get PDF
    Preface This volume contains the proceedings of ARW 2019, the twenty sixths Workshop on Automated Rea- soning (2nd{3d September 2019) hosted by the Department of Computer Science, Middlesex University, England (UK). Traditionally, this annual workshop which brings together, for a two-day intensive pro- gramme, researchers from different areas of automated reasoning, covers both traditional and emerging topics, disseminates achieved results or work in progress. During informal discussions at workshop ses- sions, the attendees, whether they are established in the Automated Reasoning community or are only at their early stages of their research career, gain invaluable feedback from colleagues. ARW always looks at the ways of strengthening links between academia, industry and government; between theoretical and practical advances. The 26th ARW is affiliated with TABLEAUX 2019 conference. These proceedings contain forteen extended abstracts contributed by the participants of the workshop and assembled in order of their presentations at the workshop. The abstracts cover a wide range of topics including the development of reasoning techniques for Agents, Model-Checking, Proof Search for classical and non-classical logics, Description Logics, development of Intelligent Prediction Models, application of Machine Learning to theorem proving, applications of AR in Cloud Computing and Networking. I would like to thank the members of the ARW Organising Committee for their advice and assis- tance. I would also like to thank the organisers of TABLEAUX/FroCoS 2019, and Andrei Popescu, the TABLEAUX Conference Chair, in particular, for the enormous work related to the organisation of this affiliation. I would also like to thank Natalia Yerashenia for helping in preparing these proceedings. London Alexander Bolotov September 201

    Modal Hybrid Logic

    Get PDF
    This is an extended version of the lectures given during the 12-th Conference on Applications of Logic in Philosophy and in the Foundations of Mathematics in Szklarska Poręba (7–11 May 2007). It contains a survey of modal hybrid logic, one of the branches of contemporary modal logic. In the first part a variety of hybrid languages and logics is presented with a discussion of expressivity matters. The second part is devoted to thorough exposition of proof methods for hybrid logics. The main point is to show that application of hybrid logics may remarkably improve the situation in modal proof theory

    Building Logic Toolboxes

    Get PDF

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    KED: a deontic theorem prover

    Get PDF
    Deontic logic (DL) is increasingly recognized as an indispensable tool in such application areas as formal representation of legal knowledge and reasoning, formal specification of computer systems and formal analysis of database integrity constraints. Despite this acknowledgement, there have been few attempts to provide computationally tractable inference mechanisms for DL. In this paper we shall be concerned with providing a computationally oriented proof method for standard DL (SDL), i.e., normal systems of modal logic with the usual possible-worlds semantics. Because of the natural and easily implementable style of proof construction it uses, this method seems particularly well-suited for applications in the AI and Law field, and though in the present version it works for SDL only, it forms an appropriate basis for developing efficient proof methods for more expressive and sophisticated extensions of SDL
    • …
    corecore