118,178 research outputs found

    The integration of computer use in education

    Get PDF
    There is an increasing awareness that disappointing experiences with the introduction of computers in education are a consequence of insufficiently taking into account factors that are crucial when introducing change in educational settings. Many of the problems in the literature show great similarity with the kind of problems often experienced in curriculum implementation. In this context the endeavors to make computer use an integrated part of classroom activities are analyzed. Emphasis will be laid on the interaction between teachers and courseware; elements for a more effective strategy for the integration of computer use in educational practice will be presented, with special attention to the design of support materials as an essential part of courseware

    Harnessing technology review 2007. Progress and impact of technology in education. Full Report.

    Get PDF
    This is the first review of the use and impact of ICT in the education system following the publication of the Government's e-Strategy for the education system, known as Harnessing Technology. The Review drew upon Becta's surveys of schools and FE colleges as well as other research to assess the impact of technology within the education system and the progress made in achieving the system outcomes of the policy

    Becta Review 2005. Evidence on the progress of ICT in education.

    Get PDF
    Drawing on Becta national surveys of ICT use and implementation within the education system, the Becta Review identified the ways in which ICT could be used to support the DfES 5 year strategy, to introduce greater efficiencies in educational provision and more choice/personalisation of content and delivery

    ScratchMaths: evaluation report and executive summary

    Get PDF
    Since 2014, computing has been part of the primary curriculum. ‘Scratch’ is frequently used by schools, and the EEF funded this trial to test whether the platform could be used to improve pupils’ computational thinking skills, and whether this in turn could have a positive impact on Key Stage 2 maths attainment. Good computational thinking skills mean pupils can use problem solving methods that involve expressing problems and their solutions in ways that a computer could execute – for example, recognising patterns. Previous research has shown that pupils with better computational thinking skills do better in maths. The study found a positive impact on computational thinking skills at the end of Year 5 – particularly for pupils who have ever been eligible for free school meals. However, there was no evidence of an impact on Key Stage 2 maths attainment when pupils were tested at the end of Year 6. Many of the schools in the trial did not fully implement ScratchMaths, particularly in Year 6, where teachers expressed concerns about the pressure of Key Stage 2 SATs. But there was no evidence that schools which did implement the programme had better maths results. Schools may be interested in ScratchMaths as an affordable way to cover aspects of the primary computing curriculum in maths lessons without any adverse effect on core maths outcomes. This trial, however, did not provide evidence that ScratchMaths is an effective way to improve maths outcomes

    The Road Ahead for State Assessments

    Get PDF
    The adoption of the Common Core State Standards offers an opportunity to make significant improvements to the large-scale statewide student assessments that exist today, and the two US DOE-funded assessment consortia -- the Partnership for the Assessment of Readiness for College and Careers (PARCC) and the SMARTER Balanced Assessment Consortium (SBAC) -- are making big strides forward. But to take full advantage of this opportunity the states must focus squarely on making assessments both fair and accurate.A new report commissioned by the Rennie Center for Education Research & Policy and Policy Analysis for California Education (PACE), The Road Ahead for State Assessments, offers a blueprint for strengthening assessment policy, pointing out how new technologies are opening up new possibilities for fairer, more accurate evaluations of what students know and are able to do. Not all of the promises can yet be delivered, but the report provides a clear set of assessment-policy recommendations. The Road Ahead for State Assessments includes three papers on assessment policy.The first, by Mark Reckase of Michigan State University, provides an overview of computer adaptive assessment. Computer adaptive assessment is an established technology that offers detailed information on where students are on a learning continuum rather than a summary judgment about whether or not they have reached an arbitrary standard of "proficiency" or "readiness." Computer adaptivity will support the fair and accurate assessment of English learners (ELs) and lead to a serious engagement with the multiple dimensions of "readiness" for college and careers.The second and third papers give specific attention to two areas in which we know that current assessments are inadequate: assessments in science and assessments for English learners.In science, paper-and-pencil, multiple choice tests provide only weak and superficial information about students' knowledge and skills -- most specifically about their abilities to think scientifically and actually do science. In their paper, Chris Dede and Jody Clarke-Midura of Harvard University illustrate the potential for richer, more authentic assessments of students' scientific understanding with a case study of a virtual performance assessment now under development at Harvard. With regard to English learners, administering tests in English to students who are learning the language, or to speakers of non-standard dialects, inevitably confounds students' content knowledge with their fluency in Standard English, to the detriment of many students. In his paper, Robert Linquanti of WestEd reviews key problems in the assessment of ELs, and identifies the essential features of an assessment system equipped to provide fair and accurate measures of their academic performance.The report's contributors offer deeply informed recommendations for assessment policy, but three are especially urgent.Build a system that ensures continued development and increased reliance on computer adaptive testing. Computer adaptive assessment provides the essential foundation for a system that can produce fair and accurate measurement of English learners' knowledge and of all students' knowledge and skills in science and other subjects. Developing computer adaptive assessments is a necessary intermediate step toward a system that makes assessment more authentic by tightly linking its tasks and instructional activities and ultimately embedding assessment in instruction. It is vital for both consortia to keep these goals in mind, even in light of current technological and resource constraints.Integrate the development of new assessments with assessments of English language proficiency (ELP). The next generation of ELP assessments should take into consideration an English learners' specific level of proficiency in English. They will need to be based on ELP standards that sufficiently specify the target academic language competencies that English learners need to progress in and gain mastery of the Common Core Standards. One of the report's authors, Robert Linquanti, states: "Acknowledging and overcoming the challenges involved in fairly and accurately assessing ELs is integral and not peripheral to the task of developing an assessment system that serves all students well. Treating the assessment of ELs as a separate problem -- or, worse yet, as one that can be left for later -- calls into question the basic legitimacy of assessment systems that drive high-stakes decisions about students, teachers, and schools." Include virtual performance assessments as part of comprehensive state assessment systems. Virtual performance assessments have considerable promise for measuring students' inquiry and problem-solving skills in science and in other subject areas, because authentic assessment can be closely tied to or even embedded in instruction. The simulation of authentic practices in settings similar to the real world opens the way to assessment of students' deeper learning and their mastery of 21st century skills across the curriculum. We are just setting out on the road toward assessments that ensure fair and accurate measurement of performance for all students, and support for sustained improvements in teaching and learning. Developing assessments that realize these goals will take time, resources and long-term policy commitment. PARCC and SBAC are taking the essential first steps down a long road, and new technologies have begun to illuminate what's possible. This report seeks to keep policymakers' attention focused on the road ahead, to ensure that the choices they make now move us further toward the goal of college and career success for all students. This publication was released at an event on May 16, 2011

    Perspectives on Deepening Teachers’ Mathematics Content Knowledge: The Case of the Oregon Mathematics Leadership Institute

    Get PDF
    The Oregon Mathematics Leadership Institute (OMLI) project served 180 Oregon teachers, and 90 administrators, across the K-12 grades from ten partner districts. OMLI offered a residential, three-week summer institute. Over the course of three consecutive summers, teachers were immersed in a total of six mathematics content classes– Algebra, Data & Chance, Discrete Mathematics, Geometry, Measurement & Change, and Number & Operations—along with an annual collegial leadership course. Each content class was designed and taught by a team of expert faculty from universities, community colleges, and K-12 districts. Each team chose a few “big ideas” on which to focus the course. For example, the Algebra team focused on algebraic structure and properties of the concept of a group, while the Data & Chance team centered their activities on the exploration of ideas of central tendency and variation using statistics and data analysis software packages. The content in all of the courses was addressed through deep investigation of the mathematics of tasks that had been selected and adapted from resources for K-12 mathematics classrooms. In addition to mathematics content, the courses were designed with specific attention to socio-mathematical norms, issues of status differences among learners, and the selection and implementation of group-worthy tasks for group work. The faculty attended sessions grounded in the work of Elizabeth Cohen on strategies for working with heterogeneous groups of learners (Cohen, 1994; Cohen et al, 1999) which was central to the OMLI design and implementation. Institute faculty modeled these strategies in the Institute classrooms and made their moves as transparent as possible, so that the teachers would be able to grapple with these strategies during the Institute and plan for implementation in their own classrooms. The Data & Chance course also modeled uses of technology in instruction using Tinkerplots. Generalization and justification were emphasized as mathematical ways of learning and knowing, and institute faculty conducted classroom discussions that intentionally modeled pushing for generalization and justification

    Cybersecurity in the Classroom: Bridging the Gap Between Computer Access and Online Safety

    Get PDF
    According to ISACA, there will be a global shortage of 2 million cybersecurity professionals worldwide by 2019. Additionally, according to Experian Data Breach Resolution, as much as 80% of all network breaches can be traced to employee negligence. These problems will not solve themselves, and they likewise won’t improve without drastic action. An effort needs to be made to help direct interested and qualified individuals to the field of cybersecurity to move toward closing this gap. Moreover, steps need to be made to better inform the public of general safety measures while online, including the safeguarding of sensitive information. A large issue with solving the problems at hand is that there seems to be no comprehensive curriculum for cybersecurity education to teach these basic principles. In my paper, I review and compare several after- and in-school programs that attempt to address this problem. I’ve also interviewed teachers from Montgomery County Public Schools, a relatively ethnically diverse school district outside of Washington, D.C. These issues need to be addressed, and while private organizations and local schools are attempting to tackle the problem, wider action may need to be taken at a national level to come to a resolution

    Cybersecurity in the Classroom: Bridging the Gap Between Computer Access and Online Safety

    Get PDF
    According to ISACA, there will be a global shortage of 2 million cybersecurity professionals worldwide by 2019. Additionally, according to Experian Data Breach Resolution, as much as 80% of all network breaches can be traced to employee negligence. These problems will not solve themselves, and they likewise won’t improve without drastic action. An effort needs to be made to help direct interested and qualified individuals to the field of cybersecurity to move toward closing this gap. Moreover, steps need to be made to better inform the public of general safety measures while online, including the safeguarding of sensitive information. A large issue with solving the problems at hand is that there seems to be no comprehensive curriculum for cybersecurity education to teach these basic principles. In my paper, I review and compare several after- and in-school programs that attempt to address this problem. I’ve also interviewed teachers from Montgomery County Public Schools, a relatively ethnically diverse school district outside of Washington, D.C. These issues need to be addressed, and while private organizations and local schools are attempting to tackle the problem, wider action may need to be taken at a national level to come to a resolution
    • …
    corecore