1,305 research outputs found

    Using Twitter to learn about the autism community

    Full text link
    Considering the raising socio-economic burden of autism spectrum disorder (ASD), timely and evidence-driven public policy decision making and communication of the latest guidelines pertaining to the treatment and management of the disorder is crucial. Yet evidence suggests that policy makers and medical practitioners do not always have a good understanding of the practices and relevant beliefs of ASD-afflicted individuals' carers who often follow questionable recommendations and adopt advice poorly supported by scientific data. The key goal of the present work is to explore the idea that Twitter, as a highly popular platform for information exchange, could be used as a data-mining source to learn about the population affected by ASD -- their behaviour, concerns, needs etc. To this end, using a large data set of over 11 million harvested tweets as the basis for our investigation, we describe a series of experiments which examine a range of linguistic and semantic aspects of messages posted by individuals interested in ASD. Our findings, the first of their nature in the published scientific literature, strongly motivate additional research on this topic and present a methodological basis for further work.Comment: Social Network Analysis and Mining, 201

    Gene selection and classification in autism gene expression data

    Get PDF
    Autism spectrum disorders (ASD) are neurodevelopmental disorders that are currently diagnosed on the basis of abnormal stereotyped behaviour as well as observable deficits in communication and social functioning. Although a variety of candidate genes have been attributed to the disorder, no single gene is applicable to more than 1–2% of the general ASD population. Despite extensive efforts, definitive genes that contribute to autism susceptibility have yet to be identified. The major problems in dealing with the gene expression dataset of autism include the presence of limited number of samples and large noises due to errors of experimental measurements and natural variation. In this study, a systematic combination of three important filters, namely t-test (TT), Wilcoxon Rank Sum (WRS) and Feature Correlation (COR) are applied along with efficient wrapper algorithm based on geometric binary particle swarm optimization-support vector machine (GBPSO-SVM), aiming at selecting and classifying the most attributed genes of autism. A new approach based on the criterion of median ratio, mean ratio and variance deviations is also applied to reduce the initial dataset prior to its involvement. Results showed that the most discriminative genes that were identified in the first and last selection steps concluded the presence of a repetitive gene (CAPS2), which was assigned as the most ASD risk gene. The fused result of genes subset that were selected by the GBPSO-SVM algorithm increased the classification accuracy to about 92.10%, which is higher than those reported in literature for the same autism dataset. Noticeably, the application of ensemble using random forest (RF) showed better performance compared to that of previous studies. However, the ensemble approach based on the employment of SVM as an integrator of the fused genes from the output branches of GBPSO-SVM outperformed the RF integrator. The overall improvement was ascribed to the selection strategies that were taken to reduce the dataset and the utilization of efficient wrapper based GBPSO-SVM algorithm

    Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: A Review

    Get PDF
    Autism spectrum disorder (ASD) research has yet to leverage big data on the same scale as other fields; however, advancements in easy, affordable data collection and analysis may soon make this a reality. Indeed, there has been a notable increase in research literature evaluating the effectiveness of machine learning for diagnosing ASD, exploring its genetic underpinnings, and designing effective interventions. This paper provides a comprehensive review of 45 papers utilizing supervised machine learning in ASD, including algorithms for classification and text analysis. The goal of the paper is to identify and describe supervised machine learning trends in ASD literature as well as inform and guide researchers interested in expanding the body of clinically, computationally, and statistically sound approaches for mining ASD data

    Intelligent Computing for Big Data

    Get PDF
    Recent advances in artificial intelligence have the potential to further develop current big data research. The Special Issue on ‘Intelligent Computing for Big Data’ highlighted a number of recent studies related to the use of intelligent computing techniques in the processing of big data for text mining, autism diagnosis, behaviour recognition, and blockchain-based storage

    Discovering gene functional relationships using a literature-based NMF model

    Get PDF
    The rapid growth of the biomedical literature and genomic information presents a major challenge for determining the functional relationships among genes. Several bioinformatics tools have been developed to extract and identify gene relationships from various biological databases. However, an intuitive user-interface tool that allows the biologist to determine functional relationships among genes is still not available. In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. We tested FAUN on three manually constructed gene document collections, and then used it to analyze several microarray-derived gene sets obtained from studies of the developing cerebellum in normal and mutant mice. FAUN provides utilities for collaborative knowledge discovery and identification of new gene relationships from text streams and repositories (e.g., MEDLINE). It is particularly useful for the validation and analysis of gene associations suggested by microarray experimentation. The FAUN site is publicly available at http://grits.eecs.utk.edu/faun

    Development of New Bioinformatic Approaches for Human Genetic Studies

    Get PDF
    The development of bioinformatics methods for human genetic studies utilizes the vast amount of data to generate new valuable information. Machine learning and statistical coupling analysis can be used in the study of human diseases. These diseases include intellectual disabilities (ID), prevalent in 1-3% of the population and caused primarily by genetics. Although many cases of ID are caused by mutations in protein-coding genes, the possible involvement of long non-coding RNAs (lncRNAs) in ID due to their role in gene expression regulation, has been explored. In this study, we used machine learning to develop a new expression-based model trained using ID genes encoded with the developing brain transcriptome. The model was fine-tuned using the class-balancing approach of synthetic over-sampling of the minority class, resulting in improved performance. We used the model to predict candidate ID-associated lncRNAs. Our model identified several candidates that overlapped with previously reported ID-associated lncRNAs, enriched with neurodevelopmental functions, and highly expressed in brain tissues. Machine learning was also used to predict protein stability changes caused by missense mutations, which can lead to disease conditions including ID. We tested Random Forests, Support Vector Machines (SVM) and Naïve Bayes to find the best-performing algorithm to develop a multi-class classifier. We developed an SVM model using relevant physico-chemical features after feature selection. Our work identified new features for predicting the effect of amino acid substitutions on protein stability and a well-performing multi-class classifier solely based on sequence information. Statistical approaches were used to analyze the association between mutations and phenotypes. In this study, we used statistical coupling analysis (SCA) to cluster disease-causing mutations and ID phenotypes. Using SCA we identified groups of co-evolving residues, known as protein sectors, in ID protein families. Within each distinct sector, mutations associated with different phenotypic manifestations associated with a syndromic ID were identified. Our results suggest that protein sector analysis can be used to associate mutations with phenotypic manifestations in human diseases. The bioinformatic methods developed in this dissertation can be used in human genetic research to understand the role of new genes and proteins in human disease

    Automatic vocalisation-based detection of fragile X syndrome and Rett syndrome

    Get PDF
    Fragile X syndrome (FXS) and Rett syndrome (RTT) are developmental disorders currently not diagnosed before toddlerhood. Even though speech-language deficits are among the key symptoms of both conditions, little is known about infant vocalisation acoustics for an automatic earlier identification of affected individuals. To bridge this gap, we applied intelligent audio analysis methodology to a compact dataset of 4454 home-recorded vocalisations of 3 individuals with FXS and 3 individuals with RTT aged 6 to 11 months, as well as 6 age- and gender-matched typically developing controls (TD). On the basis of a standardised set of 88 acoustic features, we trained linear kernel support vector machines to evaluate the feasibility of automatic classification of (a) FXS vs TD, (b) RTT vs TD, (c) atypical development (FXS+RTT) vs TD, and (d) FXS vs RTT vs TD. In paradigms (a)–(c), all infants were correctly classified; in paradigm (d), 9 of 12 were so. Spectral/cepstral and energy-related features were most relevant for classification across all paradigms. Despite the small sample size, this study reveals new insights into early vocalisation characteristics in FXS and RTT, and provides technical underpinnings for a future earlier identification of affected individuals, enabling earlier intervention and family counselling

    A novel NMF-based DWI CAD framework for prostate cancer.

    Get PDF
    In this thesis, a computer aided diagnostic (CAD) framework for detecting prostate cancer in DWI data is proposed. The proposed CAD method consists of two frameworks that use nonnegative matrix factorization (NMF) to learn meaningful features from sets of high-dimensional data. The first technique, is a three dimensional (3D) level-set DWI prostate segmentation algorithm guided by a novel probabilistic speed function. This speed function is driven by the features learned by NMF from 3D appearance, shape, and spatial data. The second technique, is a probabilistic classifier that seeks to label a prostate segmented from DWI data as either alignat, contain cancer, or benign, containing no cancer. This approach uses a NMF-based feature fusion to create a feature space where data classes are clustered. In addition, using DWI data acquired at a wide range of b-values (i.e. magnetic field strengths) is investigated. Experimental analysis indicates that for both of these frameworks, using NMF producing more accurate segmentation and classification results, respectively, and that combining the information from DWI data at several b-values can assist in detecting prostate cancer
    corecore