21,477 research outputs found

    Personalized Estimate of Chemotherapy-Induced Nausea and Vomiting: Development and External Validation of a Nomogram in Cancer Patients Receiving Highly/Moderately Emetogenic Chemotherapy.

    Get PDF
    Chemotherapy-induced nausea and vomiting (CINV) is presented in over 30% of cancer patients receiving highly/moderately emetogenic chemotherapy (HEC/MEC). The currently recommended antiemetic therapy is merely based on the emetogenic level of chemotherapy, regardless of patient's individual risk factors. It is, therefore, critical to develop an approach for personalized management of CINV in the era of precision medicine.A number of variables were involved in the development of CINV. In the present study, we pooled the data from 2 multi-institutional investigations of CINV due to HEC/MEC treatment in Asian countries. Demographic and clinical variables of 881 patients were prospectively collected as defined previously, and 862 of them had full documentation of variables of interest. The data of 548 patients from Chinese institutions were used to identify variables associated with CINV using multivariate logistic regression model, and then construct a personalized prediction model of nomogram; while the remaining 314 patients out of China (Singapore, South Korea, and Taiwan) entered the external validation set. C-index was used to measure the discrimination ability of the model.The predictors in the final model included sex, age, alcohol consumption, history of vomiting pregnancy, history of motion sickness, body surface area, emetogenicity of chemotherapy, and antiemetic regimens. The C-index was 0.67 (95% CI, 0.62-0.72) for the training set and 0.65 (95% CI, 0.58-0.72) for the validation set. The C-index was higher than that of any single predictor, including the emetogenic level of chemotherapy according to current antiemetic guidelines. Calibration curves showed good agreement between prediction and actual occurrence of CINV.This easy-to-use prediction model was based on chemotherapeutic regimens as well as patient's individual risk factors. The prediction accuracy of CINV occurrence in this nomogram was well validated by an independent data set. It could facilitate the assessment of individual risk, and thus improve the personalized management of CINV

    Using Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility Genes

    Full text link
    PURPOSE: The medical literature relevant to germline genetics is growing exponentially. Clinicians need tools monitoring and prioritizing the literature to understand the clinical implications of the pathogenic genetic variants. We developed and evaluated two machine learning models to classify abstracts as relevant to the penetrance (risk of cancer for germline mutation carriers) or prevalence of germline genetic mutations. METHODS: We conducted literature searches in PubMed and retrieved paper titles and abstracts to create an annotated dataset for training and evaluating the two machine learning classification models. Our first model is a support vector machine (SVM) which learns a linear decision rule based on the bag-of-ngrams representation of each title and abstract. Our second model is a convolutional neural network (CNN) which learns a complex nonlinear decision rule based on the raw title and abstract. We evaluated the performance of the two models on the classification of papers as relevant to penetrance or prevalence. RESULTS: For penetrance classification, we annotated 3740 paper titles and abstracts and used 60% for training the model, 20% for tuning the model, and 20% for evaluating the model. The SVM model achieves 89.53% accuracy (percentage of papers that were correctly classified) while the CNN model achieves 88.95 % accuracy. For prevalence classification, we annotated 3753 paper titles and abstracts. The SVM model achieves 89.14% accuracy while the CNN model achieves 89.13 % accuracy. CONCLUSION: Our models achieve high accuracy in classifying abstracts as relevant to penetrance or prevalence. By facilitating literature review, this tool could help clinicians and researchers keep abreast of the burgeoning knowledge of gene-cancer associations and keep the knowledge bases for clinical decision support tools up to date

    Cardiotoxicity with vascular endothelial growth factor inhibitor therapy

    Get PDF
    Angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway (VSP) have been important additions in the therapy of various cancers, especially renal cell carcinoma and colorectal cancer. Bevazicumab, the first VSP to receive FDA approval in 2004 targeting all circulating isoforms of VEGF-A, has become one of the best-selling drugs of all times. The second wave of tyrosine kinase inhibitors (TKIs), which target the intracellular site of VEGF receptor kinases, began with the approval of sorafenib in 2005 and sunitinib in 2006. Heart failure was subsequently noted, in 2–4% of patients on bevacizumab and in 3–8% of patients on VSP-TKIs. The very fact that the single-targeted monoclonal antibody bevacizumab can induce cardiotoxicity supports a pathomechanistic role for the VSP and the postulate of the “vascular” nature of VSP inhibitor cardiotoxicity. In this review we will outline this scenario in greater detail, reflecting on hypertension and coronary artery disease as risk factors for VSP inhibitor cardiotoxicity, but also similarities with peripartum and diabetic cardiomyopathy. This leads to the concept that any preexisting or coexisting condition that reduces the vascular reserve or utilizes the vascular reserve for compensatory purposes may pose a risk factor for cardiotoxicity with VSP inhibitors. These conditions need to be carefully considered in cancer patients who are to undergo VSP inhibitor therapy. Such vigilance is not to exclude patients from such prognostically extremely important therapy but to understand the continuum and to recognize and react to any cardiotoxicity dynamics early on for superior overall outcomes

    A systematic review of methods to immobilise breast tissue during adjuvant breast irradiation

    Get PDF
    Greater use of 3D conformal, Intensity Modulated Radiotherapy (IMRT) and external beam partial breast irradiation following local excision (LE) for breast cancer has necessitated a review of the effectiveness of immobilisation methods to stabilise breast tissue. To identify the suitability of currently available breast (rather than thorax) immobilisation techniques an appraisal of the literature was undertaken. The aim was to identify and evaluate the benefit of additional or novel immobilisation approaches (beyond the standard supine, single arm abducted and angled breast board technique adopted in most radiotherapy departments). A database search was supplemented with an individual search of key radiotherapy peer-reviewed journals, author searching, and searching of the grey literature. A total of 27 articles met the inclusion criteria. The review identified good reproducibility of the thorax using the standard supine arm-pole technique. Reproducibility with the prone technique appears inferior to supine methods (based on data from existing randomised controlled trials). Assessing the effectiveness of additional breast support devices (such as rings or thermoplastic material) is hampered by small sample sizes and a lack of randomised data for comparison. Attention to breast immobilisation is recommended, as well as agreement on how breast stability should be measured using volumetric imaging. Keywords: Breast, immobilisation, positioning, reproducibility, review.</p

    Collaborative, Multidisciplinary Evaluation of Cancer Variants Through Virtual Molecular Tumor Boards Informs Local Clinical Practices.

    Get PDF
    PURPOSE: The cancer research community is constantly evolving to better understand tumor biology, disease etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and one-off customized resources for data analysis often lack adequate governance and quality control needed for these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and analytics to support case review and treatment planning. METHODS: In this review, we evaluate and summarize the landscape of available tools, resources, and evidence used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards. RESULTS: Molecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs) provide an online forum for collaborative governance, provenance, and information sharing between experts outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs and communication with guideline-developing organizations can lead to progress evidenced by data harmonization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and explainable usage of artificial intelligence. CONCLUSION: Advances in cancer genomics interpretation aid in better patient and disease classification, more streamlined identification of relevant literature, and a more thorough review of available treatments and predicted patient outcomes
    corecore