21 research outputs found

    EOOLT 2007 – Proceedings of the 1st International Workshop on Equation-Based Object-Oriented Languages and Tools

    Get PDF
    Computer aided modeling and simulation of complex systems, using components from multiple application domains, such as electrical, mechanical, hydraulic, control, etc., have in recent years witness0065d a significant growth of interest. In the last decade, novel equation-based object-oriented (EOO) modeling languages, (e.g. Mode- lica, gPROMS, and VHDL-AMS) based on acausal modeling using equations have appeared. Using such languages, it has become possible to model complex systems covering multiple application domains at a high level of abstraction through reusable model components. The interest in EOO languages and tools is rapidly growing in the industry because of their increasing importance in modeling, simulation, and specification of complex systems. There exist several different EOO language communities today that grew out of different application areas (multi-body system dynamics, electronic circuit simula- tion, chemical process engineering). The members of these disparate communities rarely talk to each other in spite of the similarities of their modeling and simulation needs. The EOOLT workshop series aims at bringing these different communities together to discuss their common needs and goals as well as the algorithms and tools that best support them. Despite the short deadlines and the fact that this is a new not very established workshop series, there was a good response to the call-for-papers. Thirteen papers and one presentation were accepted to the workshop program. All papers were subject to reviews by the program committee, and are present in these electronic proceedings. The workshop program started with a welcome and introduction to the area of equa- tion-based object-oriented languages, followed by paper presentations and discussion sessions after presentations of each set of related papers. On behalf of the program committee, the Program Chairmen would like to thank all those who submitted papers to EOOLT'2007. Special thanks go to David Broman who created the web page and helped with organization of the workshop. Many thanks to the program committee for reviewing the papers. EOOLT'2007 was hosted by the Technical University of Berlin, in conjunction with the ECOOP'2007 conference

    Model transformation for multi-objective architecture optimisation for dependable systems

    Get PDF
    Model-based engineering (MBE) promises a number of advantages for the development of embedded systems. Model-based engineering depends on a common model of the system, which is refined as the system is developed. The use of a common model promises a consistent and systematic analysis of dependability, correctness, timing and performance properties. These benefits are potentially available early and throughout the development life cycle. An important part of model-based engineering is the use of analysis and design languages. The Architecture Analysis and Design Language (AADL) is a new modelling language which is increasingly being used for high dependability embedded systems development. AADL is ideally suited to model-based engineering but the use of new language threatens to isolate existing tools which use different languages. This is a particular problem when these tools provide an important development or analysis function, for example system optimisation. System designers seek an optimal trade-off between high dependability and low cost. For large systems, the design space of alternatives with respect to both dependability and cost is enormous and too large to investigate manually. For this reason automation is required to produce optimal or near optimal designs.There is, however, a lack of analysis techniques and tools that can perform a dependability analysis and optimisation of AADL models. Some analysis tools are available in the literature but they are not able to accept AADL models since they use a different modelling language. A cost effective way of adding system dependability analysis and optimisation to models expressed in AADL is to exploit the capabilities of existing tools. Model transformation is a useful technique to maximise the utility of model-based engineering approaches because it provides a route for the exploitation of mature and tested tools in a new model-based engineering context. By using model transformation techniques, one can automatically translate between AADL models and other models. The advantage of this model transformation approach is that it opens a path by which AADL models may exploit existing non-AADL tools.There is little published work which gives a comprehensive description of a method for transforming AADL models. Although transformations from AADL into other models have been reported only one comprehensive description has been published, a transformation of AADL to petri net models. There is a lack of detailed guidance for the transformation of AADL models.This thesis investigates the transformation of AADL models into the HiP-HOPS modelling language, in order to provide dependability analysis and optimisation. HiP-HOPS is a mature, state of the art, dependability analysis and optimisation tool but it has its own model. A model transformation is defined from the AADL model to the HiP-HOPS model. In addition to the model-to-model transformation, it is necessary to extend the AADL modelling attributes. For cost and dependability optimisation, a new AADL property set is developed for modelling component and system variability. This solves the problem of describing, within an AADL model, the design space of alternative designs. The transformation (with transformation rules written in ATLAS Transformation Language (ATL)) has been implemented as a plug-in for the AADL model development tool OSATE (Open-source AADL Tool Environment). To illustrate the method, the plug-in is used to transform some AADL model case-studies

    Model-based resource analysis and synthesis of service-oriented automotive software architectures

    Get PDF
    Context Automotive software architectures describe distributed functionality by an interaction of software components. One drawback of today\u27s architectures is their strong integration into the onboard communication network based on predefined dependencies at design time. The idea is to reduce this rigid integration and technological dependencies. To this end, service-oriented architecture offers a suitable methodology since network communication is dynamically established at run-time. Aim We target to provide a methodology for analysing hardware resources and synthesising automotive service-oriented architectures based on platform-independent service models. Subsequently, we focus on transforming these models into a platform-specific architecture realisation process following AUTOSAR Adaptive. Approach For the platform-independent part, we apply the concepts of design space exploration and simulation to analyse and synthesise deployment configurations, i. e., mapping services to hardware resources at an early development stage. We refine these configurations to AUTOSAR Adaptive software architecture models representing the necessary input for a subsequent implementation process for the platform-specific part. Result We present deployment configurations that are optimal for the usage of a given set of computing resources currently under consideration for our next generation of E/E architecture. We also provide simulation results that demonstrate the ability of these configurations to meet the run time requirements. Both results helped us to decide whether a particular configuration can be implemented. As a possible software toolchain for this purpose, we finally provide a prototype. Conclusion The use of models and their analysis are proper means to get there, but the quality and speed of development must also be considered

    Model-connected safety cases

    Get PDF
    Regulatory authorities require justification that safety-critical systems exhibit acceptable levels of safety. Safety cases are traditionally documents which allow the exchange of information between stakeholders and communicate the rationale of how safety is achieved via a clear, convincing and comprehensive argument and its supporting evidence. In the automotive and aviation industries, safety cases have a critical role in the certification process and their maintenance is required throughout a system’s lifecycle. Safety-case-based certification is typically handled manually and the increase in scale and complexity of modern systems renders it impractical and error prone.Several contemporary safety standards have adopted a safety-related framework that revolves around a concept of generic safety requirements, known as Safety Integrity Levels (SILs). Following these guidelines, safety can be justified through satisfaction of SILs. Careful examination of these standards suggests that despite the noticeable differences, there are converging aspects. This thesis elicits the common elements found in safety standards and defines a pattern for the development of safety cases for cross-sector application. It also establishes a metamodel that connects parts of the safety case with the target system architecture and model-based safety analysis methods. This enables the semi- automatic construction and maintenance of safety arguments that help mitigate problems related to manual approaches. Specifically, the proposed metamodel incorporates system modelling, failure information, model-based safety analysis and optimisation techniques to allocate requirements in the form of SILs. The system architecture and the allocated requirements along with a user-defined safety argument pattern, which describes the target argument structure, enable the instantiation algorithm to automatically generate the corresponding safety argument. The idea behind model-connected safety cases stemmed from a critical literature review on safety standards and practices related to safety cases. The thesis presents the method, and implemented framework, in detail and showcases the different phases and outcomes via a simple example. It then applies the method on a case study based on the Boeing 787’s brake system and evaluates the resulting argument against certain criteria, such as scalability. Finally, contributions compared to traditional approaches are laid out

    Dependability modeling and evaluation – From AADL to stochastic Petri nets

    Get PDF
    Conduire des analyses de sûreté de fonctionnement conjointement avec d'autres analyses au niveau architectural permet à la fois de prédire les effets des décisions architecturales sur la sûreté de fonctionnement du système et de faire des compromis. Par conséquent, les industriels et les universitaires se concentrent sur la définition d'approches d'ingénierie guidées par des modèles (MDE) et sur l'intégration de diverses analyses dans le processus de développement. AADL (Architecture Analysis and Design Language) a prouvé son aptitude pour la modélisation d'architectures et ce langage est actuellement jugé efficace par les industriels dans de telles approches. Notre contribution est un cadre de modélisation permettant la génération de modèles analytiques de sûreté de fonctionnement à partir de modèles AADL dans l‘objectif de faciliter l'évaluation de mesures de sûreté de fonctionnement comme la fiabilité et la disponibilité. Nous proposons une approche itérative de modélisation. Dans ce contexte, nous fournissons un ensemble de sous-modèles génériques réutilisables pour des architectures tolérantes aux fautes. Le modèle AADL de sûreté de fonctionnement est transformé en un RdPSG (Réseau de Petri Stochastique Généralisé) en appliquant des règles de transformation de modèle. Nous avons implémenté un outil de transformation automatique. Le RdPSG résultant peut être traité par des outils existants pour obtenir des mesures de sûreté de fonctionnement. L'approche est illustrée sur un ensemble du Système Informatique Français de Contrôle de Trafic Aérien. ABSTRACT : Performing dependability evaluation along with other analyses at architectural level allows both predicting the effects of architectural decisions on the dependability of a system and making tradeoffs. Thus, both industry and academia focus on defining model driven engineering (MDE) approaches and on integrating several analyses in the development process. AADL (Architecture Analysis and Design Language) has proved to be efficient for architectural modeling and is considered by industry in the context presented above. Our contribution is a modeling framework allowing the generation of dependability-oriented analytical models from AADL models, to facilitate the evaluation of dependability measures, such as reliability or availability. We propose an iterative approach for system dependability modeling using AADL. In this context, we also provide a set of reusable modeling patterns for fault tolerant architectures. The AADL dependability model is transformed into a GSPN (Generalized Stochastic Petri Net) by applying model transformation rules. We have implemented an automatic model transformation tool. The resulting GSPN can be processed by existing tools to obtain dependability measures. The modeling approach is illustrated on a subsystem of the French Air trafic Control System

    Tagungsband Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme 2005

    Get PDF

    Proposed extension of specification approach to meet needs of RCA

    Get PDF
    This document is deliverable D10.2, describing extensions of the MBSE specification approach to needs of future Functional Railway System Architectures within Task 10.3 of work package WP10 Formal Methods for Functional Railway System Architecture, within the X2Rail-5 project. This deliverable is concerned with a specification approach meeting the needs in ongoing and future developments of ERTMS, and the European initiatives RCA and EULYNX. This is a rather large scope, whose general high-level goal may be formulated as: Determine a suitable approach to specify, verify, and validate system requirements, that can meet the needs of initiatives and projects RCA and EULYNX that define a future system architecture
    corecore