50 research outputs found

    Evaluation and understanding of Playware Technology – trials with playful balance training.

    Get PDF

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    Developing and evaluating the feasibility of an active training game for smart-phones as a tool for promoting executive function in children

    Get PDF
    Executive function (EF) comprises a series of interrelated cognitive and self-regulatory skills which are required in nearly every facet of everyday life, particularly in novel circumstances. EF skills begin developing from birth and continue to grow well into adulthood but are most crucial for children as they are associated with academic and life success as well as mental and physical health. There is now strong evidence that these skills can be trained through targeted intervention in a diverse range of approaches, such as computer games, physical activity, and social play settings. This thesis presents the process of the design and evaluation of an active EF-training game (BrainQuest) for smart-phones, in participation with end-users: a group of 11-12-year-old children from a local Primary School. The design process placed emphasis on creating an engaging user experience, a phenomenon which has eluded many serious games, by building upon motivational game design theory and satisfying end-user requirements. However, in the pursuit of promoting particular executive functions: working memory; inhibitory control; planning and strategizing, the design integrated aspects of a cognitive assessment while also utilizing a range of alternative approaches for training EF, including physical activity and social play. Following an iterative design process which included many single session prototype evaluations, a mixed methods evaluation was undertaken during a 5-week study with twenty-eight 11-12-year-old school children. The study gathered exploratory qualitative and quantitative evidence regarding the game’s potential benefits which was evaluated by triangulating a range of data sources: multi-observer observations notes, interviews with children and teachers, game performance data and logs, and cognitive assessment outcomes. The analysis describes the statistical relationships between game and executive function ability, before exploring user experiences and evidence of cognitive challenge during gameplay through a series of triangulated case studies and general whole-class observations. The analysis presents the game to be engaging and enjoyable throughout the study and, for most children, able to generate a sustainable challenge. Though there were initial difficulties in understanding the complex game rules and technology, the game became increasingly usable and learnable for the target user group and created opportunities for goal setting. It also encouraged feelings of pride and self-confidence as well as facilitating positive social interactions and requiring regulation of emotion, which are considered to be pathways to developing executive functions (Diamond, 2012). There was also promising initial evidence that the game’s variable difficulty level system was able to challenge executive functions: planning and strategizing, working memory, and inhibitory control. Most notably, the game appeared to support improvements in strategizing ability by demanding increasing strategic complexity in response to evolving and increasingly difficult task demands. Supporting BrainQuest’s cognitive challenge, several statistical relationships emerged between executive function ability and game performance measures. However, the game’s ability to significantly improve cognitive outcomes could not yet be concluded. Nevertheless, these findings have implications for both the future design and evaluation practices undertaken by cognitive training researchers. From a design perspective, less credence should be paid to simply gamifying cognitive assessments while greater emphasis should be placed on integration of formal game design and motivational theories. With regards to evaluation, researchers should understand the importance of establishing first whether CTGs can remain engaging over time as well as the feasibility of their challenge to cognitive functions

    Designing Persuasively using Playful Elements

    Get PDF
    Alongside productivity and communication, computers are a valuable tool for diversion and amusement. Game Designers leverage the multifaceted world of computing to create applications that can be developed persuasively; designs can be formulated to compel users towards actions and behaviours which range from engaging in the game’s mechanics, micro-transactions, or in more complex manifestations such as encouraging reflection via the evaluation of the moral argument presented in the gameplay narrative. In my dissertation, I explore how to create compelling experiences during playful interactions. Particularly, I explore how design decisions affect users’ behaviours, and evaluations of the gaming experience to learn more about crafting persuasive mechanics in games. First, I present research on calibrating aspects of difficulty and character behaviour in the design of simple games to create more immersive experiences. My work on calibration of game difficulty, and enemy behaviour contribute insight regarding the potential of games to create engaging activities, which inspire prolonged play sessions. Further work in my dissertation explores how players interact with in-game entities they perceive as human and explores the boundaries of acceptable player interaction during co-located gaming situations. My early work gives rise to deeper questions regarding perspectives on co-players during gaming experiences. Specifically, I probe the question of how players perceive human versus computer-controlled teammates during a shared gaming experience. Additionally, I explore how game design factors in the context of a tightly-coupled shared multi-touch large display gaming experience can influence the way that people interact and, in turn, their perspectives on one another to ask: ‘how can games be used persuasively to inspire positive behaviours and social interaction?’. Issues of perspectives are a theme I carry forward in my work by exploring how game dynamics – in particular the use of territoriality – can be used to foster collaborative behaviours. Further, I discuss how my work contributes to the study of persuasive game design, games with purpose, and cement my findings in relation to the games studies and computer science literature. Last, I discuss future work, in which I discuss my ambitions for using persuasive design for social good via Games4Change

    Methods of design, an overview of game design techniques

    Get PDF
    Key Summary Points The design of games for learning requires knowledge of game design and of instructional design. One cannot merely be layer on top of the other. A learning game must be designed to meet pre-specified learning objectives. Games have specific characteristics that require specific design skills: they are entertaining as well as instructional, interactive, visually appealing, and often replayable

    Proficiency-aware systems

    Get PDF
    In an increasingly digital world, technological developments such as data-driven algorithms and context-aware applications create opportunities for novel human-computer interaction (HCI). We argue that these systems have the latent potential to stimulate users and encourage personal growth. However, users increasingly rely on the intelligence of interactive systems. Thus, it remains a challenge to design for proficiency awareness, essentially demanding increased user attention whilst preserving user engagement. Designing and implementing systems that allow users to become aware of their own proficiency and encourage them to recognize learning benefits is the primary goal of this research. In this thesis, we introduce the concept of proficiency-aware systems as one solution. In our definition, proficiency-aware systems use estimates of the user's proficiency to tailor the interaction in a domain and facilitate a reflective understanding for this proficiency. We envision that proficiency-aware systems leverage collected data for learning benefit. Here, we see self-reflection as a key for users to become aware of necessary efforts to advance their proficiency. A key challenge for proficiency-aware systems is the fact that users often have a different self-perception of their proficiency. The benefits of personal growth and advancing one's repertoire might not necessarily be apparent to users, alienating them, and possibly leading to abandoning the system. To tackle this challenge, this work does not rely on learning strategies but rather focuses on the capabilities of interactive systems to provide users with the necessary means to reflect on their proficiency, such as showing calculated text difficulty to a newspaper editor or visualizing muscle activity to a passionate sportsperson. We first elaborate on how proficiency can be detected and quantified in the context of interactive systems using physiological sensing technologies. Through developing interaction scenarios, we demonstrate the feasibility of gaze- and electromyography-based proficiency-aware systems by utilizing machine learning algorithms that can estimate users' proficiency levels for stationary vision-dominant tasks (reading, information intake) and dynamic manual tasks (playing instruments, fitness exercises). Secondly, we show how to facilitate proficiency awareness for users, including design challenges on when and how to communicate proficiency. We complement this second part by highlighting the necessity of toolkits for sensing modalities to enable the implementation of proficiency-aware systems for a wide audience. In this thesis, we contribute a definition of proficiency-aware systems, which we illustrate by designing and implementing interactive systems. We derive technical requirements for real-time, objective proficiency assessment and identify design qualities of communicating proficiency through user reflection. We summarize our findings in a set of design and engineering guidelines for proficiency awareness in interactive systems, highlighting that proficiency feedback makes performance interpretable for the user.In einer zunehmend digitalen Welt schaffen technologische Entwicklungen - wie datengesteuerte Algorithmen und kontextabhĂ€ngige Anwendungen - neuartige Interaktionsmöglichkeiten mit digitalen GerĂ€ten. Jedoch verlassen sich Nutzer oftmals auf die Intelligenz dieser Systeme, ohne dabei selbst auf eine persönliche Weiterentwicklung hinzuwirken. Wird ein solches Vorgehen angestrebt, verlangt dies seitens der Anwender eine erhöhte Aufmerksamkeit. Es ist daher herausfordernd, ein entsprechendes Design fĂŒr Kompetenzbewusstsein (Proficiency Awareness) zu etablieren. Das primĂ€re Ziel dieser Arbeit ist es, eine Methodik fĂŒr das Design und die Implementierung von interaktiven Systemen aufzustellen, die Nutzer dabei unterstĂŒtzen ĂŒber ihre eigene Kompetenz zu reflektieren, um dadurch Lerneffekte implizit wahrnehmen können. Diese Arbeit stellt ein Konzept fĂŒr fĂ€higkeitsbewusste Systeme (proficiency-aware systems) vor, welche die FĂ€higkeiten von Nutzern abschĂ€tzen, die Interaktion entsprechend anpassen sowie das Bewusstsein der Nutzer ĂŒber deren FĂ€higkeiten fördern. Hierzu sollten die Systeme gesammelte Daten von Nutzern einsetzen, um Lerneffekte sichtbar zu machen. Die Möglichkeit der Anwender zur Selbstreflexion ist hierbei als entscheidend anzusehen, um als Motivation zur Verbesserung der eigenen FĂ€higkeiten zu dienen. Eine zentrale Herausforderung solcher Systeme ist die Tatsache, dass Nutzer - im Vergleich zur AbschĂ€tzung des Systems - oft eine divergierende Selbstwahrnehmung ihrer Kompetenz haben. Im ersten Moment sind daher die Vorteile einer persönlichen Weiterentwicklung nicht unbedingt ersichtlich. Daher baut diese Forschungsarbeit nicht darauf auf, Nutzer ĂŒber vorgegebene Lernstrategien zu unterrichten, sondern sie bedient sich der Möglichkeiten interaktiver Systeme, die Anwendern die notwendigen Hilfsmittel zur VerfĂŒgung stellen, damit diese selbst ĂŒber ihre FĂ€higkeiten reflektieren können. Einem Zeitungseditor könnte beispielsweise die aktuelle Textschwierigkeit angezeigt werden, wĂ€hrend einem passionierten Sportler dessen MuskelaktivitĂ€t veranschaulicht wird. ZunĂ€chst wird herausgearbeitet, wie sich die FĂ€higkeiten der Nutzer mittels physiologischer Sensortechnologien erkennen und quantifizieren lassen. Die Evaluation von Interaktionsszenarien demonstriert die Umsetzbarkeit fĂ€higkeitsbewusster Systeme, basierend auf der Analyse von Blickbewegungen und MuskelaktivitĂ€t. Hierbei kommen Algorithmen des maschinellen Lernens zum Einsatz, die das Leistungsniveau der Anwender fĂŒr verschiedene TĂ€tigkeiten berechnen. Im Besonderen analysieren wir stationĂ€re AktivitĂ€ten, die hauptsĂ€chlich den Sehsinn ansprechen (Lesen, Aufnahme von Informationen), sowie dynamische BetĂ€tigungen, die die Motorik der Nutzer fordern (Spielen von Instrumenten, FitnessĂŒbungen). Der zweite Teil zeigt auf, wie Systeme das Bewusstsein der Anwender fĂŒr deren eigene FĂ€higkeiten fördern können, einschließlich der Designherausforderungen , wann und wie das System erkannte FĂ€higkeiten kommunizieren sollte. Abschließend wird die Notwendigkeit von Toolkits fĂŒr Sensortechnologien hervorgehoben, um die Implementierung derartiger Systeme fĂŒr ein breites Publikum zu ermöglichen. Die Forschungsarbeit beinhaltet eine Definition fĂŒr fĂ€higkeitsbewusste Systeme und veranschaulicht dieses Konzept durch den Entwurf und die Implementierung interaktiver Systeme. Ferner werden technische Anforderungen objektiver EchtzeitabschĂ€tzung von NutzerfĂ€higkeiten erforscht und DesignqualitĂ€ten fĂŒr die Kommunikation dieser AbschĂ€tzungen mittels Selbstreflexion identifiziert. Zusammengefasst sind die Erkenntnisse in einer Reihe von Design- und Entwicklungsrichtlinien fĂŒr derartige Systeme. Insbesondere die Kommunikation, der vom System erkannten Kompetenz, hilft Anwendern, die eigene Leistung zu interpretieren
    corecore