30 research outputs found

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    A formal framework for combining natural instruction and demonstration for end-user programming

    Full text link

    Logic-based Technologies for Multi-agent Systems: A Systematic Literature Review

    Get PDF
    Precisely when the success of artificial intelligence (AI) sub-symbolic techniques makes them be identified with the whole AI by many non-computerscientists and non-technical media, symbolic approaches are getting more and more attention as those that could make AI amenable to human understanding. Given the recurring cycles in the AI history, we expect that a revamp of technologies often tagged as “classical AI” – in particular, logic-based ones will take place in the next few years. On the other hand, agents and multi-agent systems (MAS) have been at the core of the design of intelligent systems since their very beginning, and their long-term connection with logic-based technologies, which characterised their early days, might open new ways to engineer explainable intelligent systems. This is why understanding the current status of logic-based technologies for MAS is nowadays of paramount importance. Accordingly, this paper aims at providing a comprehensive view of those technologies by making them the subject of a systematic literature review (SLR). The resulting technologies are discussed and evaluated from two different perspectives: the MAS and the logic-based ones

    Demystifying Social Bots: On the Intelligence of Automated Social Media Actors

    Get PDF
    Recently, social bots, (semi-) automatized accounts in social media, gained global attention in the context of public opinion manipulation. Dystopian scenarios like the malicious amplification of topics, the spreading of disinformation, and the manipulation of elections through “opinion machines” created headlines around the globe. As a consequence, much research effort has been put into the classification and detection of social bots. Yet, it is still unclear how easy an average online media user can purchase social bots, which platforms they target, where they originate from, and how sophisticated these bots are. This work provides a much needed new perspective on these questions. By providing insights into the markets of social bots in the clearnet and darknet as well as an exhaustive analysis of freely available software tools for automation during the last decade, we shed light on the availability and capabilities of automated profiles in social media platforms. Our results confirm the increasing importance of social bot technology but also uncover an as yet unknown discrepancy of theoretical and practically achieved artificial intelligence in social bots: while literature reports on a high degree of intelligence for chat bots and assumes the same for social bots, the observed degree of intelligence in social bot implementations is limited. In fact, the overwhelming majority of available services and software are of supportive nature and merely provide modules of automation instead of fully fledged “intelligent” social bots

    Towards automated composition of convergent services: a survey

    Get PDF
    A convergent service is defined as a service that exploits the convergence of communication networks and at the same time takes advantage of features of the Web. Nowadays, building up a convergent service is not trivial, because although there are significant approaches that aim to automate the service composition at different levels in the Web and Telecom domains, selecting the most appropriate approach for specific case studies is complex due to the big amount of involved information and the lack of technical considerations. Thus, in this paper, we identify the relevant phases for convergent service composition and explore the existing approaches and their associated technologies for automating each phase. For each technology, the maturity and results are analysed, as well as the elements that must be considered prior to their application in real scenarios. Furthermore, we provide research directions related to the convergent service composition phases

    Petri Net Plans A framework for collaboration and coordination in multi-robot systems

    Get PDF
    Programming the behavior of multi-robot systems is a challenging task which has a key role in developing effective systems in many application domains. In this paper, we present Petri Net Plans (PNPs), a language based on Petri Nets (PNs), which allows for intuitive and effective robot and multi-robot behavior design. PNPs are very expressive and support a rich set of features that are critical to develop robotic applications, including sensing, interrupts and concurrency. As a central feature, PNPs allow for a formal analysis of plans based on standard PN tools. Moreover, PNPs are suitable for modeling multi-robot systems and the developed behaviors can be executed in a distributed setting, while preserving the properties of the modeled system. PNPs have been deployed in several robotic platforms in different application domains. In this paper, we report three case studies, which address complex single robot plans, coordination and collaboration
    corecore