176,064 research outputs found

    Automatic Code Placement Alternatives for Ad-Hoc And Sensor Networks

    Full text link
    Developing applications for ad-hoc and sensor networks poses significant challenges. Many interesting applications in these domains entail collaboration between components distributed throughout an ad-hoc network. Defining these components, optimally placing them on nodes in the ad-hoc network and relocating them in response to changes is a fundamental problem faced by such applications. Manual approaches to code and data migration are not only platform-dependent and error-prone, but also needlessly complicate application development. Further, locally optimal decisions made by applications that share the same network can lead to globally unstable and energy inefficient behavior. In this paper we describe the design and implementation of a distributed operating system for ad-hoc and sensor networks whose goal is to enable power-aware, adaptive, and easy-to-develop ad-hoc networking applications. Our system achieves this goal by providing a single system image of a unified Java virtual machine to applications over an ad-hoc collection of heterogeneous nodes. It automatically and transparently partitions applications into components and dynamically finds a placement of these components on nodes within the ad-hoc network to reduce energy consumption and increase system longevity. This paper outlines the design of our system and evaluates two practical, power-aware, online algorithms for object placement that form the core of our system. We demonstrate that our algorithms can increase system longevity by a factor of four to five by effectively distributing energy consumption, and are suitable for use in an energy efficient operating system in which applications are distributed automatically and transparently

    Object-oriented Tools for Distributed Computing

    Get PDF
    Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Towards a Framework for Developing Mobile Agents for Managing Distributed Information Resources

    No full text
    Distributed information management tools allow users to author, disseminate, discover and manage information within large-scale networked environments, such as the Internet. Agent technology provides the flexibility and scalability necessary to develop such distributed information management applications. We present a layered organisation that is shared by the specific applications that we build. Within this organisation we describe an architecture where mobile agents can move across distributed environments, integrate with local resources and other mobile agents, and communicate their results back to the user

    The ISIS Project: Real Experience with a Fault Tolerant Programming System

    Get PDF
    The ISIS project has developed a distributed programming toolkit and a collection of higher level applications based on these tools. ISIS is now in use at more than 300 locations world-wise. The lessons (and surprises) gained from this experience with the real world are discussed

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene
    • …
    corecore