13,855 research outputs found

    Systematic development of courseware systems

    Get PDF
    Various difficulties have been reported in relation to the development of courseware systems. A central problem is to address the needs of not only the learner, but also instructor, developer, and other stakeholders, and to integrate these different needs. Another problem area is courseware architectures, to which much work has been dedicated recently. We present a systematic approach to courseware development – a methodology for courseware engineering – that addresses these problems. This methodology is rooted in the educational domain and is based on methods for software development in this context. We illustrate how this methodology can improve the quality of courseware systems and the development process

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    MegSDF Mega-system development framework

    Get PDF
    A framework for developing large, complex software systems, called Mega-Systems, is specified. The framework incorporates engineering, managerial, and technological aspects of development, concentrating on an engineering process. MegSDF proposes developing Mega-Systems as open distributed systems, pre-planned to be integrated with other systems, and designed for change. At the management level, MegSDF divides the development of a Mega-System into multiple coordinated projects, distinguishing between a meta-management for the whole development effort, responsible for long-term, global objectives, and local managements for the smaller projects, responsible for local, temporary objectives. At the engineering level, MegSDF defines a process model which specifies the tasks required for developing Mega-Systems, including their deliverables and interrelationships. The engineering process emphasizes the coordination required to develop the constituent systems. The process is active for the life time of the Mega-System and compatible with different approaches for performing its tasks. The engineering process consists of System, Mega-System, Mega-System Synthesis, and Meta-Management tasks. System tasks develop constituent systems. Mega-Systems tasks provide a means for engineering coordination, including Domain Analysis, Mega-System Architecture Design. and Infrastructure Acquisition tasks. Mega-System Synthesis tasks assemble Mega-Systems from the constituent systems. The Meta-Management task plans and controls the entire process. The domain analysis task provides a general, comprehensive, non-constructive domain model, which is used as a common basis for understanding the domain. MegSDF builds the domain model by integrating multiple significant perceptions of the domain. It recommends using a domain modeling schema to facilitate modeling and integrating the multiple perceptions. The Mega-System architecture design task specifies a conceptual architecture and an application architecture. The conceptual architecture specifies common design and implementation concepts and is defined using multiple views. The application architecture maps the domain model into an implementation and defines the overall structure of the Mega-System, its boundaries, components, and interfaces. The infrastructure acquisition task addresses the technological aspects of development. It is responsible for choosing, developing or purchasing, validating, and supporting an infrastructure. The infrastructure integrates the enabling technologies into a unified platform which is used as a common solution for handling technologies. The infrastructure facilitates portability of systems and incorporation of new technologies. It is implemented as a set of services, divided into separate service groups which correspond to the views identified in the conceptual architecture

    Towards guidelines for building a business case and gathering evidence of software reference architectures in industry

    Get PDF
    Background: Software reference architectures are becoming widely adopted by organizations that need to support the design and maintenance of software applications of a shared domain. For organizations that plan to adopt this architecture-centric approach, it becomes fundamental to know the return on investment and to understand how software reference architectures are designed, maintained, and used. Unfortunately, there is little evidence-based support to help organizations with these challenges. Methods: We have conducted action research in an industry-academia collaboration between the GESSI research group and everis, a multinational IT consulting firm based in Spain. Results: The results from such collaboration are being packaged in order to create guidelines that could be used in similar contexts as the one of everis. The main result of this paper is the construction of empirically-grounded guidelines that support organizations to decide on the adoption of software reference architectures and to gather evidence to improve RA-related practices. Conclusions: The created guidelines could be used by other organizations outside of our industry-academia collaboration. With this goal in mind, we describe the guidelines in detail for their use.Peer ReviewedPostprint (published version

    Embedding Requirements within the Model Driven Architecture

    Get PDF
    The Model Driven Architecture (MDA) brings benefits to software development, among them the potential for connecting software models with the business domain. This paper focuses on the upstream or Computation Independent Model (CIM) phase of the MDA. Our contention is that, whilst there are many models and notations available within the CIM Phase, those that are currently popular and supported by the Object Management Group (OMG), may not be the most useful notations for business analysts nor sufficient to fully support software requirements and specification. Therefore, with specific emphasis on the value of the Business Process Modelling Notation (BPMN) for business analysts, this paper provides an example of a typical CIM approach before describing an approach which incorporates specific requirements techniques. A framework extension to the MDA is then introduced; which embeds requirements and specification within the CIM, thus further enhancing the utility of MDA by providing a more complete method for business analysis

    The surveying profession and urban design

    Get PDF

    Industry-driven innovative system development for the construction industry: The DIVERCITY project

    Get PDF
    Collaborative working has become possible using the innovative integrated systems in construction as many activities are performed globally with stakeholders situated in various locations. The Integrated VR based information systems can bind the fragmentation and provide communication and collaboration between the distributed stakeholders n various locations. The development of these technologies is vital for the uptake of these systems by the construction industry. This paper starts by emphasising the importance of construction IT research and reviews some future research directions in this area. In particular, the paper explores how virtual prototyping can improve the productivity and effectiveness of construction projects, and presents DIVERCITY, which is th as a case study of the research in virtual prototyping. Besides, the paper explores the requirements engineering of the DIVERCITY project. DIVERCITY has large and evolving requirements, which considered the perspectives of multiple stakeholders, such as clients, architects and contractors. However, practitioners are often unsure of the detail of how virtual environments would support the construction process, and how to overcome some barriers to the introduction of new technologies. This complicates the requirements engineering process

    Investigating Collaborative Development Activities in a Virtual World: An Activity Theory Perspective

    Get PDF
    Contemporary virtual worlds provide unique environments in which users may collaborate in the development of shared digital artifacts. However, the ways in which such collaboration takes place is to date under researched. This paper uses an activity theory perspective to analyze the development activities of two communities within the virtual world of Second Life, based on data gathered using ethnographic methods. The study reveals (1) the complimentary and diverging practices utilized by these two different communities of practice, (2) the mediating function of various tools, rules, and work roles in collaborative development activities, (3) the tensions created in such activities and the manner in which users overcome these tensions
    corecore