13,146 research outputs found

    Predicting regression test failures using genetic algorithm-selected dynamic performance analysis metrics

    Get PDF
    A novel framework for predicting regression test failures is proposed. The basic principle embodied in the framework is to use performance analysis tools to capture the runtime behaviour of a program as it executes each test in a regression suite. The performance information is then used to build a dynamically predictive model of test outcomes. Our framework is evaluated using a genetic algorithm for dynamic metric selection in combination with state-of-the-art machine learning classifiers. We show that if a program is modified and some tests subsequently fail, then it is possible to predict with considerable accuracy which of the remaining tests will also fail which can be used to help prioritise tests in time constrained testing environments

    Mining developer communication data streams

    Full text link
    This paper explores the concepts of modelling a software development project as a process that results in the creation of a continuous stream of data. In terms of the Jazz repository used in this research, one aspect of that stream of data would be developer communication. Such data can be used to create an evolving social network characterized by a range of metrics. This paper presents the application of data stream mining techniques to identify the most useful metrics for predicting build outcomes. Results are presented from applying the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift. The results indicate that only a small number of the available metrics considered have any significance for predicting the outcome of a build

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio
    corecore