28 research outputs found

    Contribución a la estimulación del uso de soluciones Cloud Computing: Diseño de un intermediador de servicios Cloud para fomentar el uso de ecosistemas distribuidos digitales confiables, interoperables y de acuerdo a la legalidad. Aplicación en entornos multi-cloud.

    Get PDF
    184 p.El objetivo del trabajo de investigación presentado en esta tesis es facilitar a los desarrolladores y operadores de aplicaciones desplegadas en múltiples Nubes el descubrimiento y la gestión de los diferentes servicios de Computación, soportando su reutilización y combinación, para generar una red de servicios interoperables, que cumplen con las leyes y cuyos acuerdos de nivel de servicio pueden ser evaluados de manera continua. Una de las contribuciones de esta tesis es el diseño y desarrollo de un bróker de servicios de Computación llamado ACSmI (Advanced Cloud Services meta-Intermediator). ACSmI permite evaluar el cumplimiento de los acuerdos de nivel de servicio incluyendo la legislación. ACSmI también proporciona una capa de abstracción intermedia para los servicios de Computación donde los desarrolladores pueden acceder fácilmente a un catálogo de servicios acreditados y compatibles con los requisitos no funcionales establecidos.Además, este trabajo de investigación propone la caracterización de las aplicaciones nativas multiNube y el concepto de "DevOps extendido" especialmente pensado para este tipo de aplicaciones. El concepto "DevOps extendido" pretende resolver algunos de los problemas actuales del diseño, desarrollo, implementación y adaptación de aplicaciones multiNube, proporcionando un enfoque DevOps novedoso y extendido para la adaptación de las prácticas actuales de DevOps al paradigma multiNube

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Microservice security: a systematic literature review

    Get PDF
    International audienceMicroservices is an emerging paradigm for developing distributed systems. With their widespread adoption, more and more work investigated the relation between microservices and security. Alas, the literature on this subject does not form a well-defined corpus : it is spread over many venues and composed of contributions mainly addressing specific scenarios or needs. In this work, we conduct a systematic review of the field, gathering 290 relevant publications—at the time of writing, the largest curated dataset on the topic. We analyse our dataset along two lines: (a) quantitatively, through publication metadata, which allows us to chart publication outlets, communities, approaches, and tackled issues; (b) qualitatively, through 20 research questions used to provide an aggregated overview of the literature and to spot gaps left open. We summarise our analyses in the conclusion in the form of a call for action to address the main open challenges

    Deployment of DeepTech AI Models in Engineering Solutions

    Get PDF
    Ponencia presentada en ICRAMAE-2k21, International Conference on Recent Advances in Mechanical and Automation Engineering, Vivekananda Global University, Jaipur, India, 29-30th November 2021[EN]Industrial Engineering is a branch of engineering that focuses on the design and operation of industrial processes. It involves the application of science to the construction of production systems. This field has undergone significant advancements over the last decades. In the last centuries, the emergence of different technologies has led to breakthroughs in engineering, making it possible to automate processes in industries. Steam, electricity, the internet, and now Artificial Intelligence technologies have all brought with them greater levels of automation to machinery, gradually decreasing human involvement in processes such as procurement, raw material handling, manufacturing and quality control

    An Integrated Framework for the Methodological Assurance of Security and Privacy in the Development and Operation of MultiCloud Applications

    Get PDF
    x, 169 p.This Thesis studies research questions about how to design multiCloud applications taking into account security and privacy requirements to protect the system from potential risks and about how to decide which security and privacy protections to include in the system. In addition, solutions are needed to overcome the difficulties in assuring security and privacy properties defined at design time still hold all along the system life-cycle, from development to operation.In this Thesis an innovative DevOps integrated methodology and framework are presented, which help to rationalise and systematise security and privacy analyses in multiCloud to enable an informed decision-process for risk-cost balanced selection of the protections of the system components and the protections to request from Cloud Service Providers used. The focus of the work is on the Development phase of the analysis and creation of multiCloud applications.The main contributions of this Thesis for multiCloud applications are four: i) The integrated DevOps methodology for security and privacy assurance; and its integrating parts: ii) a security and privacy requirements modelling language, iii) a continuous risk assessment methodology and its complementary risk-based optimisation of defences, and iv) a Security and Privacy Service Level AgreementComposition method.The integrated DevOps methodology and its integrating Development methods have been validated in the case study of a real multiCloud application in the eHealth domain. The validation confirmed the feasibility and benefits of the solution with regards to the rationalisation and systematisation of security and privacy assurance in multiCloud systems

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical
    corecore