72 research outputs found

    Polynomial Synthesis of Asynchronous Automata

    Full text link
    Zielonka's theorem shows that each regular set of Mazurkiewicz traces can be implemented as a system of synchronized processes with a distributed control structure called asynchronous automaton. This paper gives a polynomial algorithm for the synthesis of a non-deterministic asynchronous automaton from a regular Mazurkiewicz trace language. This new construction is based on an unfolding approach that improves the complexity of Zielonka's and Pighizzini's techniques in terms of the number of states.Comment: The MOdelling and VErification (MOVE) tea

    Test of preemptive real-time systems

    Get PDF
    Time Petri nets with stopwatches not only model system/environment interactions and time constraints. They further enable modeling of suspend/resume operations in real-time systems. Assuming the modelled systems are non deterministic and partially observable, the paper proposes a test generation approach which implements an online testing policy and outputs test results that are valid for the (part of the) selected environment. A relativized conformance relation named rswtioco is defined and a test generation algorithm is presented. The proposed approach is illustrated on an example

    Hypernode Automata

    Get PDF
    We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs

    Prompt Delay

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. Recently, such games with quantitative winning conditions in weak MSO with the unbounding quantifier were studied, but their properties turned out to be unsatisfactory. In particular, unbounded lookahead is in general necessary. Here, we study delay games with winning conditions given by Prompt-LTL, Linear Temporal Logic equipped with a parameterized eventually operator whose scope is bounded. Our main result shows that solving Prompt-LTL delay games is complete for triply-exponential time. Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the scope of the parameterized eventually operator. Thus, we identify Prompt-LTL as the first known class of well-behaved quantitative winning conditions for delay games. Finally, we show that applying our techniques to delay games with \omega-regular winning conditions answers open questions in the cases where the winning conditions are given by non-deterministic, universal, or alternating automata

    Optimal Zielonka-Type Construction of Deterministic Asynchronous Automata

    Get PDF
    International audienceAsynchronous automata are parallel compositions of finite- state processes synchronizing over shared variables. A deep theorem due to Zielonka says that every regular trace language can be represented by a deterministic asynchronous automaton. In this paper we improve the construction, in that the size of the obtained asynchronous automaton is polynomial in the size of a given DFA and simply exponential in the number of processes. We show that our construction is optimal within the class of automata produced by Zielonka-type constructions. In particular, we provide the first non trivial lower bound on the size of asynchronous automata

    Analysis of Communicating Infinite State Machines using Lattice Automata

    Get PDF
    Communication protocols can be formally described by the Communicating Finite-State Machines~(CFSM) model. This model is expressive, but not expressive enough to deal with complex protocols that involve structured messages encapsulating integers or lists of integers. This is the reason why we propose an extension of this model : the Symbolic Communicating Machines (SCM). We also propose an approximate reachability analysis method, based on lattice automata. Lattice automata are finite automata, the transitions of which are labeled with elements of an atomic lattice. We tackle the problem of the determinization as well as the definition of a widening operator for these automata. We also show that lattice automata are useful for the interprocedural analysis

    Asynchronous synthesis techniques for coordinating autonomic managers in the cloud

    Get PDF
    International audienceCloud computing allows the delivery of on-demand computing resources over the internet on a pay-for-use basis. From a technical point of view, cloud applications usually consist of several software components deployed on remote virtual machines. Managing such applications is a challenging problem because manual administration is no longer realistic for these complex distributed systems. Thus, autonomic computing is a promising solution for monitoring and updating these applications automatically. This is achieved through the automation of administration functions and the use of control loops called autonomic managers. An autonomic manager observes the environment , detects changes, and reconfigures dynamically the application. Multiple autonomic managers can be deployed in the same system and must make consistent decisions. Using them without coordination may lead to inconsistencies and error-prone situations. In this article, we first present a simple language for expressing coordination constraints given a set of auto-nomic managers. Second, given a coordination expression written with that language, we propose new synthesis techniques for automatically generating an asynchronous controller. These synthesis techniques work in two steps by successively generating a model of the controller and a Java object corresponding to this model. This Java code is finally used for deploying the generated controller. As far as evaluation is concerned, we validated our approach by using it for coordinating real-world cloud applications
    • …
    corecore