18 research outputs found

    Digital Signal Processor Based Real-Time Phased Array Radar Backend System and Optimization Algorithms

    Get PDF
    This dissertation presents an implementation of multifunctional large-scale phased array radar based on the scalable DSP platform. The challenge of building large-scale phased array radar backend is how to address the compute-intensive operations and high data throughput requirement in both front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware are typically used to solve those difficulties. However, with the help of the fast development of IC industry, using a parallel set of high-performing programmable chips can be an alternative. We present a hybrid high-performance backend system by using DSP as the core computing device and MTCA as the system frame. Thus, the mapping techniques for the front and backend signal processing algorithm based on DSP are discussed in depth. Beside high-efficiency computing device, the system architecture would be a major factor influencing the reliability and performance of the backend system. The reliability requires the system must incorporate the redundancy both in hardware and software. In this dissertation, we propose a parallel modular system based on MTCA chassis, which can be reliable, scalable, and fault-tolerant. Finally, we present an example of high performance phased array radar backend, in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768 channels. This example shows the potential of using the combination of DSP and MTCA as the computing platform for the future multi-functional large-scale phased array radar

    Deterministic-aided single dataset STAP method based on sparse recovery in heterogeneous clutter environments

    No full text
    Abstract Traditional space-time adaptive processing (STAP) usually needs many independent and identically distributed (i.i.d) training datasets for estimating clutter covariance matrix (CCM). But this requirement is hardly satisfied in the heterogeneous clutter environments, which lead to an inaccurate estimation of CCM and accordingly degrade the performance of STAP significantly. To improve the performance of STAP in heterogeneous environments, a novel deterministic-aided (DA) single dataset STAP method based on sparse recovery technique (SR) is proposed in this paper. This presented algorithm exploits the property that the clutter components of side-looking airborne or spaceborne radar are distributed along the clutter ridge to estimate the CCM of the cell under test (CUT) without any secondary training data. The new method only uses a single CUT data to acquire a high-resolution angle-Doppler power spectrum using sparse recovery (SR) approach and then employs a new adaptive deterministic-aided generalized inner product (GIP) algorithm to recognize and select the clutter components in the CUT angle-Doppler power spectrum automatically. Subsequently, the CCM, which is used to construct the weights of STAP filter, can be effectively estimated by the selected clutter components to fulfill the final STAP filter processing. Simulation results verify the effectiveness of the proposed detection method

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered
    corecore