143 research outputs found

    No distributed quantum advantage for approximate graph coloring

    Full text link
    We give an almost complete characterization of the hardness of cc-coloring χ\chi-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a cc-coloring in χ\chi-chromatic graphs in O~(n1α)\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}}) rounds, with α=c1χ1\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor. 2) We prove that any distributed algorithm for this problem requires Ω(n1α)\Omega(n^{\frac{1}{\alpha}}) rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or cc-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs

    Kochen-Specker Sets and the Rank-1 Quantum Chromatic Number

    Full text link
    The quantum chromatic number of a graph GG is sandwiched between its chromatic number and its clique number, which are well known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χq(1)(G)\chi_q^{(1)}(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G)\chi(G) and the minimum dimension of orthogonal representations ξ(G)\xi(G). It is known that ξ(G)χq(1)(G)χ(G)\xi(G) \leq \chi_q^{(1)}(G) \leq \chi(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G)=χq(1)(G)\xi(G) = \chi_q^{(1)}(G), we exhibit a class of graphs such that ξ(G)<χq(1)(G)\xi(G) < \chi_q^{(1)}(G), and we give a necessary and sufficient condition to have χq(1)(G)<χ(G)\chi_q^{(1)}(G) < \chi(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of noncontextuality of physical theories, and more recently in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis, Hasegawa, Kikuchi, and Sasaki on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.Comment: 12 page

    Classical simulation of short-time quantum dynamics

    Full text link
    Recent progress in the development of quantum technologies has enabled the direct investigation of dynamics of increasingly complex quantum many-body systems. This motivates the study of the complexity of classical algorithms for this problem in order to benchmark quantum simulators and to delineate the regime of quantum advantage. Here we present classical algorithms for approximating the dynamics of local observables and nonlocal quantities such as the Loschmidt echo, where the evolution is governed by a local Hamiltonian. For short times, their computational cost scales polynomially with the system size and the inverse of the approximation error. In the case of local observables, the proposed algorithm has a better dependence on the approximation error than algorithms based on the Lieb-Robinson bound. Our results use cluster expansion techniques adapted to the dynamical setting, for which we give a novel proof of their convergence. This has important physical consequences besides our efficient algorithms. In particular, we establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.Comment: 23 pages, 5 figures, comments welcom

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde

    What Makes a Distributed Problem Truly Local?

    Get PDF
    International audienceIn this talk we attempt to identify the characteristics of a task of distributed network computing, which make it easy (or hard) to solve by meansof fast local algorithms. We look at specific combinatorial tasks within the LOCAL model of distributed computation, and rephrase some recent algorithmic results in a framework of constraint satisfaction. Finally, we discuss the issue of efficient computability for relaxed variants of the LOCAL model, involving the so-called non-signaling property
    corecore