106 research outputs found

    Cyclotomic Polynomials in Ring-LWE Homomorphic Encryption Schemes

    Get PDF
    Homomorphic Encryption has been considered the \u27Holy Grail of Cryptography\u27 since the discovery of secure public key cryptography in the 1970s. In 2009, a long-standing question about whether fully homomorphic encryption is theoretically plausible was affirmatively answered by Craig Gentry and his bootstrapping construction. Gentry\u27s breakthrough has initiated a surge of new research in this area, one of the most promising ideas being the Learning With Errors (LWE) problem posed by Oded Regev\u27s. Although this problem has proved to be versatile as a basis for homomorphic encryption schemes, the large key sizes result in a quadratic overhead making this inefficient for practical purposes. In order to address this efficiency issue, Oded Regev, Chris Peikert and Vadim Lyubashevsky ported the LWE problem to a ring setting, thus calling it the Ring Learning with Errors (Ring-LWE) problem. The underlying ring structure of the Ring-LWE problem is Z[x]/Φm(x)\mathbb{Z}[x]/\Phi_m(x) where Φm(x)\Phi_m(x) is the mmth cyclotomic polynomial. The hardness of this problem is based on special properties of cyclotomic number fields. In this thesis, we explore the properties of lattices and algebraic number fields, in particular, cyclotomic number fields which make them a good choice to be used in the Ring-LWE problem setting. The biggest crutch in homomorphic encryption schemes till date is performing homomorphic multiplication. As the noise term in the resulting ciphertext grows multiplicatively, it is very hard to recover the original ciphertext after a certain number of multiplications without compromising on efficiency. We investigate the efficiency of an implemented cryptosystem based on the Ring-LWE hardness and measure the performance of homomorphic multiplication by varying different parameters such as the cipherspace cyclotomic index and the underlying ring Zp\mathbb{Z}_p

    Algorithmic enumeration of ideal classes for quaternion orders

    Get PDF
    We provide algorithms to count and enumerate representatives of the (right) ideal classes of an Eichler order in a quaternion algebra defined over a number field. We analyze the run time of these algorithms and consider several related problems, including the computation of two-sided ideal classes, isomorphism classes of orders, connecting ideals for orders, and ideal principalization. We conclude by giving the complete list of definite Eichler orders with class number at most 2.Comment: 39 pages, includes 2 tables; corrections made to Table 8.

    Artin's primitive root conjecture -a survey -

    Get PDF
    This is an expanded version of a write-up of a talk given in the fall of 2000 in Oberwolfach. A large part of it is intended to be understandable by non-number theorists with a mathematical background. The talk covered some of the history, results and ideas connected with Artin's celebrated primitive root conjecture dating from 1927. In the update several new results established after 2000 are also discussed.Comment: 87 pages, 512 references, to appear in Integer

    Number Field Sieve with Provable Complexity

    Get PDF
    In this thesis we give an in-depth introduction to the General Number Field Sieve, as it was used by Buhler, Lenstra, and Pomerance, before looking at one of the modern developments of this algorithm: A randomized version with provable complexity. This version was posited in 2017 by Lee and Venkatesan and will be preceded by ample material from both algebraic and analytic number theory, Galois theory, and probability theory.Comment: MSc Thesis, 113 pages, 1 tabl

    Linear groups and computation

    Get PDF
    Funding: A. S. Detinko is supported by a Marie Skłodowska-Curie Individual Fellowship grant (Horizon 2020, EU Framework Programme for Research and Innovation).We present an exposition of our ongoing project in a new area of applicable mathematics: practical computation with finitely generated linear groups over infinite fields. Methodology and algorithms available for practical computation in this class of groups are surveyed. We illustrate the solution of hard mathematical problems by computer experimentation. Possible avenues for further progress are discussed.PostprintPeer reviewe

    Deterministic polynomial factoring over finite fields: A uniform approach via P-schemes

    Get PDF
    We introduce a family of combinatorial objects called P-schemes, where P is a collection of subgroups of a finite group G. A P-scheme is a collection of partitions of right coset spaces H\G, indexed by H ∈ P, that satisfies a list of axioms. These objects generalize the classical notion of association schemes as well as m-schemes (Ivanyos et al., 2009). We apply the theory of P-schemes to deterministic polynomial factoring over finite fields: suppose f(X) ∈ Z[X] and a prime number pare given, such that f(X) :=f(X) modpfactorizes into n =deg(f)distinct linear factors over the finite field F_p. We show that, assuming the generalized Riemann hypothesis (GRH), f(X)can be completely factorized in deterministic polynomial time if the Galois group G of f(X)is an almost simple primitive permutation group on the set of roots of f(X), and the socle of Gis a subgroup of Sym(k)for kup to 2^O(√log n). This is the first deterministic polynomial-time factoring algorithm for primitive Galois groups of superpolynomial order. We prove our result by developing a generic factoring algorithm and analyzing it using P-schemes. We also show that the main results achieved by known GRH-based deterministic polynomial factoring algorithms can be derived from our generic algorithm in a uniform way. Finally, we investigate the schemes conjecturein Ivanyos et al. (2009), and formulate analogous conjectures associated with various families of permutation groups. We show that these conjectures form a hierarchy of relaxations of the original schemes conjecture, and their positive resolutions would imply deterministic polynomial-time factoring algorithms for various families of Galois groups under GRH

    Linear groups and computation

    Get PDF
    We present an exposition of our ongoing project in a new area of applicable mathematics: practical computation with finitely generated linear groups over infinite fields. Methodology and algorithms available for this class of groups are surveyed. We illustrate the solution of hard mathematical problems by computer experimentation. Possible avenues for further progress are discussed
    • …
    corecore