425 research outputs found

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    An Introductory Survey of Computational Space Complexity

    Get PDF
    Using the Understanding by Design pedagogical methodology, this thesis aims to combine, clarify, and contextualize introductory ideas about computational space complexity and package them in an instructional unit. The unit is composed primarily of a Unit Template, series of Lessons, and Performance Assessments. It is intended to present content acknowledged as valuable by ACM that is often missing from undergraduate computer science curricula at peer educational institutions to Trinity University. The unit covers ideas such as the space hierarchy, computational time / space tradeoffs, and completeness, and is designed to promote understanding and inquiry of and beyond its subject matter

    On the Computational Complexity of MapReduce

    Full text link
    In this paper we study MapReduce computations from a complexity-theoretic perspective. First, we formulate a uniform version of the MRC model of Karloff et al. (2010). We then show that the class of regular languages, and moreover all of sublogarithmic space, lies in constant round MRC. This result also applies to the MPC model of Andoni et al. (2014). In addition, we prove that, conditioned on a variant of the Exponential Time Hypothesis, there are strict hierarchies within MRC so that increasing the number of rounds or the amount of time per processor increases the power of MRC. To the best of our knowledge we are the first to approach the MapReduce model with complexity-theoretic techniques, and our work lays the foundation for further analysis relating MapReduce to established complexity classes

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d≥2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Sublinearly space bounded iterative arrays

    Get PDF
    Iterative arrays (IAs) are a, parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this note, realtime-lAs with sublinear space bounds are used to accept formal languages. The existence of a proper hierarchy of space complexity classes between logarithmic anel linear space bounds is proved. Furthermore, an optimal spacc lower bound for non-regular language recognition is shown. Key words: Iterative arrays, cellular automata, space bounded computations, decidability questions, formal languages, theory of computatio
    • …
    corecore