326 research outputs found

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L

    Tight Bounds for Black Hole Search with Scattered Agents in Synchronous Rings

    Full text link
    We study the problem of locating a particularly dangerous node, the so-called black hole in a synchronous anonymous ring network with mobile agents. A black hole is a harmful stationary process residing in a node of the network and destroying destroys all mobile agents visiting that node without leaving any trace. We consider the more challenging scenario when the agents are identical and initially scattered within the network. Moreover, we solve the problem with agents that have constant-sized memory and carry a constant number of identical tokens, which can be placed at nodes of the network. In contrast, the only known solutions for the case of scattered agents searching for a black hole, use stronger models where the agents have non-constant memory, can write messages in whiteboards located at nodes or are allowed to mark both the edges and nodes of the network with tokens. This paper solves the problem for ring networks containing a single black hole. We are interested in the minimum resources (number of agents and tokens) necessary for locating all links incident to the black hole. We present deterministic algorithms for ring topologies and provide matching lower and upper bounds for the number of agents and the number of tokens required for deterministic solutions to the black hole search problem, in oriented or unoriented rings, using movable or unmovable tokens

    Byzantine Gathering in Networks

    Full text link
    This paper investigates an open problem introduced in [14]. Two or more mobile agents start from different nodes of a network and have to accomplish the task of gathering which consists in getting all together at the same node at the same time. An adversary chooses the initial nodes of the agents and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label but does not know the labels of the other agents or their positions relative to its own. Agents move in synchronous rounds and can communicate with each other only when located at the same node. Up to f of the agents are Byzantine. A Byzantine agent can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. What is the minimum number M of good agents that guarantees deterministic gathering of all of them, with termination? We provide exact answers to this open problem by considering the case when the agents initially know the size of the network and the case when they do not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2. More precisely, for networks of known size, we design a deterministic algorithm gathering all good agents in any network provided that the number of good agents is at least f+1. For networks of unknown size, we also design a deterministic algorithm ensuring the gathering of all good agents in any network but provided that the number of good agents is at least f+2. Both of our algorithms are optimal in terms of required number of good agents, as each of them perfectly matches the respective lower bound on M shown in [14], which is of f+1 when the size of the network is known and of f+2 when it is unknown

    Black Hole Search with Finite Automata Scattered in a Synchronous Torus

    Full text link
    We consider the problem of locating a black hole in synchronous anonymous networks using finite state agents. A black hole is a harmful node in the network that destroys any agent visiting that node without leaving any trace. The objective is to locate the black hole without destroying too many agents. This is difficult to achieve when the agents are initially scattered in the network and are unaware of the location of each other. Previous studies for black hole search used more powerful models where the agents had non-constant memory, were labelled with distinct identifiers and could either write messages on the nodes of the network or mark the edges of the network. In contrast, we solve the problem using a small team of finite-state agents each carrying a constant number of identical tokens that could be placed on the nodes of the network. Thus, all resources used in our algorithms are independent of the network size. We restrict our attention to oriented torus networks and first show that no finite team of finite state agents can solve the problem in such networks, when the tokens are not movable. In case the agents are equipped with movable tokens, we determine lower bounds on the number of agents and tokens required for solving the problem in torus networks of arbitrary size. Further, we present a deterministic solution to the black hole search problem for oriented torus networks, using the minimum number of agents and tokens

    Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics Collective Decision Making Scenario

    Get PDF
    While swarm robotics systems are often claimed to be highly fault-tolerant, so far research has limited its attention to safe laboratory settings and has virtually ignored security issues in the presence of Byzantine robots—i.e., robots with arbitrarily faulty or malicious behavior. However, in many applications one or more Byzantine robots may suffice to let current swarm coordination mechanisms fail with unpredictable or disastrous outcomes. In this paper, we provide a proof-of-concept for managing security issues in swarm robotics systems via blockchain technology. Our approach uses decentralized programs executed via blockchain technology (blockchain-based smart contracts) to establish secure swarm coordination mechanisms and to identify and exclude Byzantine swarm members. We studied the performance of our blockchain-based approach in a collective decision-making scenario both in the presence and absence of Byzantine robots and compared our results to those obtained with an existing collective decision approach. The results show a clear advantage of the blockchain approach when Byzantine robots are part of the swarm.Marie Skłodowska-Curie actions (EU project BROS - DLV-751615

    Gathering in Dynamic Rings

    Full text link
    The gathering problem requires a set of mobile agents, arbitrarily positioned at different nodes of a network to group within finite time at the same location, not fixed in advanced. The extensive existing literature on this problem shares the same fundamental assumption: the topological structure does not change during the rendezvous or the gathering; this is true also for those investigations that consider faulty nodes. In other words, they only consider static graphs. In this paper we start the investigation of gathering in dynamic graphs, that is networks where the topology changes continuously and at unpredictable locations. We study the feasibility of gathering mobile agents, identical and without explicit communication capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we consider is the classic 1-interval-connectivity. We focus on the impact that factors such as chirality (i.e., a common sense of orientation) and cross detection (i.e., the ability to detect, when traversing an edge, whether some agent is traversing it in the other direction), have on the solvability of the problem. We provide a complete characterization of the classes of initial configurations from which the gathering problem is solvable in presence and in absence of cross detection and of chirality. The feasibility results of the characterization are all constructive: we provide distributed algorithms that allow the agents to gather. In particular, the protocols for gathering with cross detection are time optimal. We also show that cross detection is a powerful computational element. We prove that, without chirality, knowledge of the ring size is strictly more powerful than knowledge of the number of agents; on the other hand, with chirality, knowledge of n can be substituted by knowledge of k, yielding the same classes of feasible initial configurations

    Byzantine Gathering in Polynomial Time

    Full text link
    We study the task of Byzantine gathering in a network modeled as a graph. Despite the presence of Byzantine agents, all the other (good) agents, starting from possibly different nodes and applying the same deterministic algorithm, have to meet at the same node in finite time and stop moving. An adversary chooses the initial nodes of the agents and assigns a different label to each of them. The agents move in synchronous rounds and communicate with each other only when located at the same node. Within the team, f of the agents are Byzantine. A Byzantine agent acts in an unpredictable way: in particular it may forge the label of another agent or create a completely new one. Besides its label, which corresponds to a local knowledge, an agent is assigned some global knowledge GK that is common to all agents. In literature, the Byzantine gathering problem has been analyzed in arbitrary n-node graphs by considering the scenario when GK=(n,f) and the scenario when GK=f. In the first (resp. second) scenario, it has been shown that the minimum number of good agents guaranteeing deterministic gathering of all of them is f+1 (resp. f+2). For both these scenarios, all the existing deterministic algorithms, whether or not they are optimal in terms of required number of good agents, have a time complexity that is exponential in n and L, where L is the largest label belonging to a good agent. In this paper, we seek to design a deterministic solution for Byzantine gathering that makes a concession on the proportion of Byzantine agents within the team, but that offers a significantly lower complexity. We also seek to use a global knowledge whose the length of the binary representation is small. Assuming that the agents are in a strong team i.e., a team in which the number of good agents is at least some prescribed value that is quadratic in f, we give positive and negative results
    corecore