658 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Image Compression Using Cascaded Neural Networks

    Get PDF
    Images are forming an increasingly large part of modern communications, bringing the need for efficient and effective compression. Many techniques developed for this purpose include transform coding, vector quantization and neural networks. In this thesis, a new neural network method is used to achieve image compression. This work extends the use of 2-layer neural networks to a combination of cascaded networks with one node in the hidden layer. A redistribution of the gray levels in the training phase is implemented in a random fashion to make the minimization of the mean square error applicable to a broad range of images. The computational complexity of this approach is analyzed in terms of overall number of weights and overall convergence. Image quality is measured objectively, using peak signal-to-noise ratio and subjectively, using perception. The effects of different image contents and compression ratios are assessed. Results show the performance superiority of cascaded neural networks compared to that of fixedarchitecture training paradigms especially at high compression ratios. The proposed new method is implemented in MATLAB. The results obtained, such as compression ratio and computing time of the compressed images, are presented

    Image Compression Using Cascaded Neural Networks

    Get PDF
    Images are forming an increasingly large part of modern communications, bringing the need for efficient and effective compression. Many techniques developed for this purpose include transform coding, vector quantization and neural networks. In this thesis, a new neural network method is used to achieve image compression. This work extends the use of 2-layer neural networks to a combination of cascaded networks with one node in the hidden layer. A redistribution of the gray levels in the training phase is implemented in a random fashion to make the minimization of the mean square error applicable to a broad range of images. The computational complexity of this approach is analyzed in terms of overall number of weights and overall convergence. Image quality is measured objectively, using peak signal-to-noise ratio and subjectively, using perception. The effects of different image contents and compression ratios are assessed. Results show the performance superiority of cascaded neural networks compared to that of fixedarchitecture training paradigms especially at high compression ratios. The proposed new method is implemented in MATLAB. The results obtained, such as compression ratio and computing time of the compressed images, are presented

    NASA Tech Briefs, June 2012

    Get PDF
    Topics covered include: iGlobe Interactive Visualization and Analysis of Spatial Data; Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer; Small Aircraft Data Distribution System; Earth Science Datacasting v2.0; Algorithm for Compressing Time-Series Data; Onboard Science and Applications Algorithm for Hyperspectral Data Reduction; Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data; Security Data Warehouse Application; Integrated Laser Characterization, Data Acquisition, and Command and Control Test System; Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder; Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager; High-Voltage, Low-Power BNC Feedthrough Terminator; SpaceCube Mini; Dichroic Filter for Separating W-Band and Ka-Band; Active Mirror Predictive and Requirement Verification Software (AMP-ReVS); Navigation/Prop Software Suite; Personal Computer Transport Analysis Program; Pressure Ratio to Thermal Environments; Probabilistic Fatigue Damage Program (FATIG); ASCENT Program; JPL Genesis and Rapid Intensification Processes (GRIP) Portal; Data::Downloader; Fault Tolerance Middleware for a Multi-Core System; DspaceOgreTerrain 3D Terrain Visualization Tool; Trick Simulation Environment 07; Geometric Reasoning for Automated Planning; Water Detection Based on Color Variation; Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth; Scanning Laser Infrared Molecular Spectrometer (SLIMS); Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy; Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole; Enhanced-Adhesion Multiwalled Carbon Nanotubes on Titanium Substrates for Stray Light Control; Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries 23 Ultra-Lightweight; and Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications

    The impact of human errors on the performance to failure of concrete bridges

    Get PDF
    Programa doutoral em Engenharia CivilO colapso de pontes que tiveram lugar em todo o mundo nos últimos 50 anos destacou o erro humano como a principal causa do colapso de pontes. Dadas as implicações financeiras, sociais e psicológicas de tais eventos indesejados, a contribuição do erro humano no colapso de pontes deve ser investigada com o objetivo de compreender como é que a robustez e a segurança estrutural das pontes são afetadas pelos mesmos. A deterioração das pontes, leva à redução das margens de segurança, expondo muitas vezes deficiências causadas por erros de projeto e construção, realçando a importância do desenvolvimento de procedimentos de avaliação estrutural mais abrangentes, tendo em conta numerosas fontes de incertezas. Apesar destes factos conhecidos existem poucos trabalhos disponíveis investigando questões tão relevantes. Neste sentido este trabalho aborda a identificação dos erros humanos em suas inúmeras formas, ou seja, erros de projeto e erros de construção, de acordo com opiniões de especialistas e eventos de colapso de pontes registados. Diferentes erros representam diferentes ameaças à segurança estrutural; como tal o risco relativo dos erros também é investigado. O real impacto dos erros humanos na segurança estrutural é investigado através de três pontes de betão armado, considerando a probabilidade de falha perante um conjunto de incertezas como principal indicador de desempenho. Tal investigação é realizada em duas etapas, uma onde os erros de projeto e construção são introduzidos em cenários onde se entende que eles estão presentes e outra onde a possibilidade de ocorrência de erros de construção é investigada considerando a probabilidade do erro humano e a magnitude do erro. Ocorrências únicas e múltiplas de erros também são discutidas. Modelos de elementos finitos, considerada para fins de análise estrutural não linear, e modelos substitutos são introduzidos como a base das múltiplas análises de fiabilidade estrutural realizadas. Finalmente, a previsão da vida útil de pontes considerando a corrosão induzida por carbonatação e a redução da vida útil das pontes causada por erros de construção são questões também abordadas.The collapse of bridges that have taken place worldwide in the last 50 years has highlighted human error as the main cause of the collapse of bridges. Given the financial, social and phycological implications of such hazardous events, human errors' contribution to the collapse of bridges must be investigated, aiming to understand how their robustness and structural safety are affected. The ageing of bridges leads to safety margin reductions that often expose deficiencies caused by design and construction errors, underling the importance of developing more comprehensive frameworks that consider numerous sources of uncertainty for structural safety assessment purposes. Despite these facts and known needs, few works facing such relevant concerns are available. Accordingly, human errors are identified in their numerous forms, i.e., design errors and construction errors, according to expert opinions and real-world bridge collapse events. Different errors represent different threats to structural safety; thus, their relative risk is also investigated. The actual impact of human errors on structural safety is investigated through one reinforced and two prestressed concrete bridges, using their probability of failure, given a group of uncertainties, as the main performance indicator. Such investigation is performed on two fronts, one where design and construction errors are introduced under scenarios where they are understood to be present, and another where the possibility of occurrence of construction errors is investigated considering probabilistic models to describe human error probabilities and error magnitudes. Single and multiple occurrences of errors are also discussed. Finite element modelling, considered for non-linear structural analysis purposes, and surrogate models are introduced as the backbone of the multiple structural reliability analysis performed. Finally, the service life prediction of bridges considering carbonation-induced corrosion and the service life reduction of bridges due to construction errors are carefully addressed.This work was partially financed by (i) national funds through FCT - Foundation for Science and Technology, under grant agreement “PD/ BD/143003/2018” attributed to the PhD Candidate through the iRail Doctoral program; and (ii) FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020

    Adaptive Computing Systems for Aerospace

    Get PDF
    RÉSUMÉ En raison de leur complexité croissante, les systèmes informatiques modernes nécessitent de nouvelles méthodologies permettant d’automatiser leur conception et d’améliorer leurs performances. L’espace, en particulier, constitue un environnement très défavorable au maintien de la performance de ces systèmes : sans protection des rayonnements ionisants et des particules, l’électronique basée sur CMOS peut subir des erreurs transitoires, une dégradation des performances et une usure accélérée causant ultimement une défaillance du système. Les approches traditionnellement adoptees pour garantir la fiabilité du système et prolonger sa durée de vie sont basées sur la redondance, généralement établie durant la conception. En revanche, ces solutions sont coûteuses et parfois inefficaces, puisqu'elles augmentent la taille et la complexité du système, l'exposant à des risques plus élevés de surchauffe et d'erreurs. Les conséquences de ces limites sont d'autant plus importantes lorsqu'elles s’appliquent aux systèmes critiques (e.g., contraintes par le temps ou dont l’accès est limité) qui doivent être en mesure de prendre des décisions sans intervention humaine. Sur la base de ces besoins et limites, le développement en aérospatial de systèmes informatiques avec capacités adaptatives peut être considéré comme la solution la plus appropriée pour les dispositifs intégrés à haute performance. L’informatique auto-adaptative offre un potentiel sans égal pour assurer la création d’une génération d’ordinateurs plus intelligents et fiables. Qui plus est, elle répond aux besoins modernes de concevoir et programmer des systèmes informatiques capables de répondre à des objectifs en conflit. En nous inspirant des domaines de l’intelligence artificielle et des systèmes reconfigurables, nous aspirons à développer des systèmes informatiques auto-adaptatifs pour l’aérospatiale qui répondent aux enjeux et besoins actuels. Notre objectif est d’améliorer l’efficacité de ces systèmes, leur tolerance aux pannes et leur capacité de calcul. Afin d’atteindre cet objectif, une analyse expérimentale et comparative des algorithmes les plus populaires pour l’exploration multi-objectifs de l’espace de conception est d’abord effectuée. Les algorithmes ont été recueillis suite à une revue de la plus récente littérature et comprennent des méthodes heuristiques, évolutives et statistiques. L’analyse et la comparaison de ceux-ci permettent de cerner les forces et limites de chacun et d'ainsi définir des lignes directrices favorisant un choix optimal d’algorithmes d’exploration. Pour la création d’un système d’optimisation autonome—permettant le compromis entre plusieurs objectifs—nous exploitons les capacités des modèles graphiques probabilistes. Nous introduisons une méthodologie basée sur les modèles de Markov cachés dynamiques, laquelle permet d’équilibrer la disponibilité et la durée de vie d’un système multiprocesseur. Ceci est obtenu en estimant l'occurrence des erreurs permanentes parmi les erreurs transitoires et en migrant dynamiquement le calcul sur les ressources supplémentaires en cas de défaillance. La nature dynamique du modèle rend celui-ci adaptable à différents profils de mission et taux d’erreur. Les résultats montrent que nous sommes en mesure de prolonger la durée de vie du système tout en conservant une disponibilité proche du cas idéal. En raison des contraintes de temps rigoureuses imposées par les systèmes aérospatiaux, nous étudions aussi l’optimisation de la tolérance aux pannes en présence d'exigences d’exécution en temps réel. Nous proposons une méthodologie pour améliorer la fiabilité du calcul en présence d’erreurs transitoires pour les tâches en temps réel d’un système multiprocesseur homogène avec des capacités de réglage de tension et de fréquence. Dans ce cadre, nous définissons un nouveau compromis probabiliste entre la consommation d’énergie et la tolérance aux erreurs. Comme nous reconnaissons que la résilience est une propriété d’intérêt omniprésente (par exemple, pour la conception et l’analyse de systems complexes génériques), nous adaptons une définition formelle de celle-ci à un cadre probabiliste dérivé à nouveau de modèles de Markov cachés. Ce cadre nous permet de modéliser de façon réaliste l’évolution stochastique et l’observabilité partielle des phénomènes du monde réel. Nous proposons un algorithme permettant le calcul exact efficace de l’étape essentielle d’inférence laquelle est requise pour vérifier des propriétés génériques. Pour démontrer la flexibilité de cette approche, nous la validons, entre autres, dans le contexte d’un système informatisé reconfigurable pour l’aérospatiale. Enfin, nous étendons la portée de nos recherches vers la robotique et les systèmes multi-agents, deux sujets dont la popularité est croissante en exploration spatiale. Nous abordons le problème de l’évaluation et de l’entretien de la connectivité dans le context distribué et auto-adaptatif de la robotique en essaim. Nous examinons les limites des solutions existantes et proposons une nouvelle méthodologie pour créer des géométries complexes connectées gérant plusieurs tâches simultanément. Des contributions additionnelles dans plusieurs domaines sont résumés dans les annexes, nommément : (i) la conception de CubeSats, (ii) la modélisation des rayonnements spatiaux pour l’injection d’erreur dans FPGA et (iii) l’analyse temporelle probabiliste pour les systèmes en temps réel. À notre avis, cette recherche constitue un tremplin utile vers la création d’une nouvelle génération de systèmes informatiques qui exécutent leurs tâches d’une façon autonome et fiable, favorisant une exploration spatiale plus simple et moins coûteuse.----------ABSTRACT Today's computer systems are growing more and more complex at a pace that requires the development of novel and more effective methodologies to automate their design. Space, in particular, represents a challenging environment: without protection from ionizing and particle radiation, CMOS-based electronics are subject to transients faults, performance degradation, accelerated wear, and, ultimately, system failure. Traditional approaches adopted to guarantee reliability and extended lifetime are based on redundancy that is established at design-time. These solutions are expensive and sometimes inefficient, as they increase the complexity and size of a system, exposing it to higher risks of overheating and incurring in radiation-induced errors. Moreover, critical systems---e.g., time-constrained ones and those where access is limited---must be able to cope with pivotal situations without relying on human intervention. Hence, the emerging interest in computer systems with adaptive capabilities as the most suitable solution for novel high-performance embedded devices for aerospace. Self-adaptive computing carries unmatched potential and great promises for the creation of a new generation of smart, more reliable computers, and it addresses the challenge of designing and programming modern and future computer systems that must meet conflicting goals. Drawing from the fields of artificial intelligence and reconfigurable systems, we aim at developing self-adaptive computer systems for aerospace. Our goal is to improve their efficiency, fault-tolerance, and computational capabilities. The first step in this research is the experimental analysis of the most popular multi-objective design-space exploration algorithms for high-level design. These algorithms were collected from the recent literature and include heuristic, evolutionary, and statistical methods. Their comparison provides insights that we use to define guidelines for the choice of the most appropriate optimization algorithms, given the features of the design space. For the creation of a self-managing optimization framework---enabling the adaptive trade-off of multiple objectives---we leverage the tools of probabilistic graphical models. We introduce a mechanism based on dynamic hidden Markov models that balances the availability and lifetime of multiprocessor systems. This is achieved by estimating the occurrence of permanent faults amid transient faults, and by dynamically migrating the computation on excess resources, when failure occurs. The dynamic nature of the model makes it adjustable to different mission profiles and fault rates. The results show that we are able to lead systems to extended lifetimes, while keeping their availability close to ideal. On account of the stringent timing constraints imposed by aerospace systems, we then investigate the optimization of fault-tolerance under real-time requirements. We propose a methodology to improve the reliability of computation in the presence of transient errors when considering the mapping of real-time tasks on a homogeneous multiprocessor system with voltage and frequency scaling capabilities. In this framework, we take advantage of probability theory to define a novel trade-off between power consumption and fault-tolerance. As we recognize that resilience is a pervasive property of interest (e.g., for the design and analysis of generic complex systems), we adapt a formal definition of it to one more probabilistic framework derived from hidden Markov models. This allows us to realistically model the stochastic evolution and partial observability of complex real-world environments. Within this framework, we propose an efficient algorithm for the exact computation of the essential inference step required to construct generic property checking. To demonstrate the flexibility of this approach, we validate it in the context, among others, of a self-aware, reconfigurable computing system for aerospace. Finally, we move the scope of our research towards robotics and multi-agent systems: a topic of thriving popularity for space exploration. We tackle the problem of connectivity assessment and maintenance in the distributed and self-adaptive context of swarm robotics. We review the limitations of existing solutions and propose a novel methodology to create connected complex geometries for multiple task coverage. Additional contributions in the areas of (i) CubeSat design, (ii) the modelling of space radiation for FPGA fault-injection, and (iii) probabilistic timing analysis for real-time systems are summarized in the appendices. In the author's opinion, this research provides a number of useful stepping stones for the creation of a new generation of computing systems that autonomously---and reliably---perform their tasks for longer periods of time, fostering simpler and cheaper space exploration
    • …
    corecore