3,021 research outputs found

    Deterministic voting in distributed systems using error-correcting codes

    Get PDF
    Distributed voting is an important problem in reliable computing. In an N Modular Redundant (NMR) system, the N computational modules execute identical tasks and they need to periodically vote on their current states. In this paper, we propose a deterministic majority voting algorithm for NMR systems. Our voting algorithm uses error-correcting codes to drastically reduce the average case communication complexity. In particular, we show that the efficiency of our voting algorithm can be improved by choosing the parameters of the error-correcting code to match the probability of the computational faults. For example, consider an NMR system with 31 modules, each with a state of m bits, where each module has an independent computational error probability of 10^-3. In, this NMR system, our algorithm can reduce the average case communication complexity to approximately 1.0825 m compared with the communication complexity of 31 m of the naive algorithm in which every module broadcasts its local result to all other modules. We have also implemented the voting algorithm over a network of workstations. The experimental performance results match well the theoretical predictions

    Deterministic Voting in Distributed Systems Using Error-Correcting Codes

    Get PDF
    Distributed voting is an important problem in reliable computing. In an N Modular Redundant (NMR) system, the N computational modules execute identical tasks and they need to periodically vote on their current states. In this paper, we propose a deterministic majority voting algorithm for NMR systems. Our voting algorithm uses error-correcting codes to drastically reduce the average case communication complexity. In particular, we show that the efficiency of our voting algorithm can be improved by choosing the parameters of the error correcting code to match the probability of the computational faults. For example, consider an NMR system with 31 modules, each with a state of m bits, where each module has an independent computational error probability of 10 to the power of minus 3. In this NMR system, our algorithm can reduce the average case communication complexity to approximately 1.0825m compared with the communication complexity of 31m of the naive algorithm in which every module broadcasts its local result to all other modules. We have also implemented the voting algorithm over a network of workstations. The experimental performance results match well the theoretical predictions

    Deterministic voting in distributed systems using error-correcting codes

    Full text link

    Standard interface definition for avionics data bus systems

    Get PDF
    Data bus for avionics system of space shuttle, noting functions of interface unit, error detection and recovery, redundancy, and bus control philosoph

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Solving Multiclass Learning Problems via Error-Correcting Output Codes

    Full text link
    Multiclass learning problems involve finding a definition for an unknown function f(x) whose range is a discrete set containing k &gt 2 values (i.e., k ``classes''). The definition is acquired by studying collections of training examples of the form [x_i, f (x_i)]. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of overfitting avoidance techniques such as decision-tree pruning. Finally, we show that---like the other methods---the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore