51 research outputs found

    Deterministic soliton automata with at most one cycle

    Get PDF
    AbstractSoliton valves have been proposed as molecular switching elements. Their mathematical model is the soliton graph and the soliton automaton (Dassow and Jürgensen, J. Comput. System Sci.40 (1990), 154–181). In this paper we continue the study of the logic aspects of soliton switching. There are two cases of special importance: those of deterministic and those of strongly deterministic soliton automata. The former have deterministic state transitions in the usual sense of automaton theory. The latter do not only have deterministic state transitions, but also deterministic soliton paths—a much stronger property, as it turns out. In op cit. a characterization of indecomposable, strongly deterministic soliton automata was proved and it was shown that their transition monoids are primitive groups of permutations. Roughly speaking, the main difference between deterministic and strongly deterministic soliton automata is that in the former the underlying soliton graphs may contain cycles of odd lengths while such cycles are not permitted in the soliton graphs belonging to strongly deterministic soliton automata. In the present paper, we focus on a special class of deterministic soliton automata, that of deterministic soliton automata whose underlying graphs contain at most one cycle. For this class we derive structural descriptions. Our main results concern the elimination of certain types of loops, the treatment of soliton paths with repeated edges, the structure of cycles of odd length, and the transition monoid. As an application we show that the memory element proposed in the literature (Carter, in Bioelectronics, edited by Aizawa, Research and Development Report 50, CMC Press, Denver, CO, 1984) can be transformed in into a soliton tree, thus turning a deterministic device into a logically equivalent strongly deterministic device

    Elementary decomposition of soliton automata

    Get PDF
    Soliton automata are the mathematical models of certain possible molecular switching devices. In this paper we work out a decomposition of soliton automata through the structure of their underlying graphs. These results lead to the original aim, to give a characterization of soliton automata in general case

    Non-Linear Lattice

    Get PDF
    The development of mathematical techniques, combined with new possibilities of computational simulation, have greatly broadened the study of non-linear lattices, a theme among the most refined and interdisciplinary-oriented in the field of mathematical physics. This Special Issue mainly focuses on state-of-the-art advancements concerning the many facets of non-linear lattices, from the theoretical ones to more applied ones. The non-linear and discrete systems play a key role in all ranges of physical experience, from macrophenomena to condensed matter, up to some models of space discrete space-time

    Acta Cybernetica : Volume 14. Number 4.

    Get PDF

    Acta Cybernetica : Volume 12. Number 2.

    Get PDF

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Cellular automata methods in mathematical physics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1994.Includes bibliographical references (p. 233-243).by Mark Andrew Smith.Ph.D

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine
    • …
    corecore