7,416 research outputs found

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Reactive Turing Machines

    Full text link
    We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction, and use it to define a notion of executable transition system. We show that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity by an RTM, and that every effective transition system is simulated modulo the variant of branching bisimilarity that does not require divergence preservation. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between executability and finite definability in a simple process calculus

    Measurement-Based Quantum Turing Machines and Questions of Universalities

    Full text link
    Quantum measurement is universal for quantum computation. This universality allows alternative schemes to the traditional three-step organisation of quantum computation: initial state preparation, unitary transformation, measurement. In order to formalize these other forms of computation, while pointing out the role and the necessity of classical control in measurement-based computation, and for establishing a new upper bound of the minimal resources needed to quantum universality, a formal model is introduced by means of Measurement-based Quantum Turing Machines.Comment: 12 pages, 9 figure

    Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic Assembly in 2D

    Get PDF
    We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape. In contrast, we show that temperature 1 self-assembly in 3 dimensions, even when growth is restricted to at most 1 step into the third dimension, is capable of simulating a large class of temperature 2 systems, in turn permitting the simulation of arbitrary Turing machines and the assembly of n×nn\times n squares in near optimal O(logn)O(\log n) tile complexity. Further, we consider temperature 1 probabilistic assembly in 2D, and show that with a logarithmic scale up of tile complexity and shape scale, the same general class of temperature τ=2\tau=2 systems can be simulated with high probability, yielding Turing machine simulation and O(log2n)O(\log^2 n) assembly of n×nn\times n squares with high probability. Our results show a sharp contrast in achievable tile complexity at temperature 1 if either growth into the third dimension or a small probability of error are permitted. Motivated by applications in nanotechnology and molecular computing, and the plausibility of implementing 3 dimensional self-assembly systems, our techniques may provide the needed power of temperature 2 systems, while at the same time avoiding the experimental challenges faced by those systems
    corecore