38,161 research outputs found

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    A Quasi-Linear Time Algorithm Deciding Whether Weak B\"uchi Automata Reading Vectors of Reals Recognize Saturated Languages

    Full text link
    This work considers weak deterministic B\"uchi automata reading encodings of non-negative dd-vectors of reals in a fixed base. A saturated language is a language which contains all encoding of elements belonging to a set of dd-vectors of reals. A Real Vector Automaton is an automaton which recognizes a saturated language. It is explained how to decide in quasi-linear time whether a minimal weak deterministic B\"uchi automaton is a Real Vector Automaton. The problem is solved both for the two standard encodings of vectors of numbers: the sequential encoding and the parallel encoding. This algorithm runs in linear time for minimal weak B\"uchi automata accepting set of reals. Finally, the same problem is also solved for parallel encoding of automata reading vectors of relative reals

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    History-deterministic Parikh Automata

    Get PDF
    Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run. Thereby, they preserve many of the desirable properties of finite automata. Deterministic Parikh automata are strictly weaker than nondeterministic ones, but enjoy better closure and algorithmic properties. This state of affairs motivates the study of intermediate forms of nondeterminism. Here, we investigate history-deterministic Parikh automata, i.e., automata whose nondeterminism can be resolved on the fly. This restricted form of nondeterminism is well-suited for applications which classically call for determinism, e.g., solving games and composition. We show that history-deterministic Parikh automata are strictly more expressive than deterministic ones, incomparable to unambiguous ones, and enjoy almost all of the closure and some of the algorithmic properties of deterministic automata.Comment: arXiv admin note: text overlap with arXiv:2207.0769

    Synchronizing Words for Weighted and Timed Automata

    Get PDF
    The problem of synchronizing automata is concerned with the existence of a word that sends all states of the automaton to one and the same state. This problem has classically been studied for complete deterministic finite automata, with the existence problem being NLOGSPACE-complete. In this paper we consider synchronizing-word problems for weighted and timed automata. We consider the synchronization problem in several variants and combinations of these, including deterministic and non-deterministic timed and weighted automata, synchronization to unique location with possibly different clock valuations or accumulated weights, as well as synchronization with a safety condition forbidding the automaton to visit states outside a safety-set during synchronization (e.g. energy constraints). For deterministic weighted automata, the synchronization problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under general safety constraints. For timed automata the synchronization problems are shown to be PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case

    Constructing Deterministic ?-Automata from Examples by an Extension of the RPNI Algorithm

    Get PDF
    The RPNI algorithm (Oncina, Garcia 1992) constructs deterministic finite automata from finite sets of negative and positive example words. We propose and analyze an extension of this algorithm to deterministic ?-automata with different types of acceptance conditions. In order to obtain this generalization of RPNI, we develop algorithms for the standard acceptance conditions of ?-automata that check for a given set of example words and a deterministic transition system, whether these example words can be accepted in the transition system with a corresponding acceptance condition. Based on these algorithms, we can define the extension of RPNI to infinite words. We prove that it can learn all deterministic ?-automata with an informative right congruence in the limit with polynomial time and data. We also show that the algorithm, while it can learn some automata that do not have an informative right congruence, cannot learn deterministic ?-automata for all regular ?-languages in the limit. Finally, we also prove that active learning with membership and equivalence queries is not easier for automata with an informative right congruence than for general deterministic ?-automata
    • …
    corecore