185 research outputs found

    Deterministic Sampling on the Torus for Bivariate Circular Estimation

    Get PDF

    Directional statistics and filtering using libDirectional

    Get PDF
    In this paper, we present libDirectional, a MATLAB library for directional statistics and directional estimation. It supports a variety of commonly used distributions on the unit circle, such as the von Mises, wrapped normal, and wrapped Cauchy distributions. Furthermore, various distributions on higher-dimensional manifolds such as the unit hypersphere and the hypertorus are available. Based on these distributions, several recursive filtering algorithms in libDirectional allow estimation on these manifolds. The functionality is implemented in a clear, well-documented, and object-oriented structure that is both easy to use and easy to extend

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Bayesian cylindrical data modeling using Abe-Ley mixtures

    Get PDF
    This paper proposes a Metropolis-Hastings algorithm based on Markov chain Monte Carlo sampling, to estimate the parameters of the Abe-Ley distribution, which is a recently proposed Weibull-Sine-Skewed-von Mises mixture model, for bivariate circular-linear data. Current literature estimates the parameters of these mixture models using the expectation-maximization method, but we will show that this exhibits a few shortcomings for the considered mixture model. First, standard expectation-maximization does not guarantee convergence to a global optimum, because the likelihood is multi-modal, which results from the high dimensionality of the mixture's likelihood. Second, given that expectation-maximization provides point estimates of the parameters only, the uncertainties of the estimates (e.g., confidence intervals) are not directly available in these methods. Hence, extra calculations are needed to quantify such uncertainty. We propose a Metropolis-Hastings based algorithm that avoids both shortcomings of expectation-maximization. Indeed, Metropolis-Hastings provides an approximation to the complete (posterior) distribution, given that it samples from the joint posterior of the mixture parameters. This facilitates direct inference (e.g., about uncertainty, multi-modality) from the estimation. In developing the algorithm, we tackle various challenges including convergence speed, label switching and selecting the optimum number of mixture components. We then (i) verify the effectiveness of the proposed algorithm on sample datasets with known true parameters, and further (ii) validate our methodology on an environmental dataset (a traditional application domain of Abe-Ley mixtures where measurements are function of direction). Finally, we (iii) demonstrate the usefulness of our approach in an application domain where the circular measurement is periodic in time. (C) 2018 Elsevier Inc. All rights reserved

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Spectral analysis of spatial processes

    Get PDF
    • …
    corecore