38 research outputs found

    RADIC II : a fault tolerant architecture with flexible dynamic redundancy

    Get PDF
    The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.La demanda de computadores más veloces ha provocado el incremento del área de computación de altas prestaciones, generalmente representado por el uso de sistemas distribuidos como los clusters de computadores ejecutando aplicaciones paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora de proveer alta disponibilidad, aislando los efectos causados por los fallos. Prestaciones y disponibilidad componen un binomio indisociable para algunos tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en consideración estas dos restricciones desde el momento de su diseño. En esta disertación, presentamos algunos efectos colaterales que se puede presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso fallado. Estos efectos pueden causar una degradación del sistema, afectando las prestaciones y disponibilidad finales. Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers). RADIC-II mantiene al máximo posible las características de transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o evitar algunos efectos colaterales en la recuperación

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    An input centric paradigm for program dynamic optimizations and lifetime evolvement

    Get PDF
    Accurately predicting program behaviors (e.g., memory locality, method calling frequency) is fundamental for program optimizations and runtime adaptations. Despite decades of remarkable progress, prior studies have not systematically exploited the use of program inputs, a deciding factor of program behaviors, to help in program dynamic optimizations. Triggered by the strong and predictive correlations between program inputs and program behaviors that recent studies have uncovered, the dissertation work aims to bring program inputs into the focus of program behavior analysis and program dynamic optimization, cultivating a new paradigm named input-centric program behavior analysis and dynamic optimization.;The new optimization paradigm consists of three components, forming a three-layer pyramid. at the base is program input characterization, a component for resolving the complexity in program raw inputs and extracting important features. In the middle is input-behavior modeling, a component for recognizing and modeling the correlations between characterized input features and program behaviors. These two components constitute input-centric program behavior analysis, which (ideally) is able to predict the large-scope behaviors of a program\u27s execution as soon as the execution starts. The top layer is input-centric adaptation, which capitalizes on the novel opportunities created by the first two components to facilitate proactive adaptation for program optimizations.;This dissertation aims to develop this paradigm in two stages. In the first stage, we concentrate on exploring the implications of program inputs for program behaviors and dynamic optimization. We construct the basic input-centric optimization framework based on of line training to realize the basic functionalities of the three major components of the paradigm. For the second stage, we focus on making the paradigm practical by addressing multi-facet issues in handling input complexities, transparent training data collection, predictive model evolvement across production runs. The techniques proposed in this stage together cultivate a lifelong continuous optimization scheme with cross-input adaptivity.;Fundamentally the new optimization paradigm provides a brand new solution for program dynamic optimization. The techniques proposed in the dissertation together resolve the adaptivity-proactivity dilemma that has been limiting the effectiveness of existing optimization techniques. its benefits are demonstrated through proactive dynamic optimizations in Jikes RVM and version selection using IBM XL C Compiler, yielding significant performance improvement on a set of Java and C/C++ programs. It may open new opportunities for a broad range of runtime optimizations and adaptations. The evaluation results on both Java and C/C++ applications demonstrate the new paradigm is promising in advancing the current state of program optimizations

    Detecting and Tolerating Byzantine Faults in Database Systems

    Get PDF
    This thesis describes the design, implementation, and evaluation of a replication scheme to handle Byzantine faults in transaction processing database systems. The scheme compares answers from queries and updates on multiple replicas which are off-the-shelf database systems, to provide a single database that is Byzantine fault tolerant. The scheme works when the replicas are homogeneous, but it also allows heterogeneous replication in which replicas come from different vendors. Heterogeneous replicas reduce the impact of bugs and security compromises because they are implemented independently and are thus less likely to suffer correlated failures. A final component of the scheme is a repair mechanism that can correct the state of a faulty replica, ensuring the longevity of the scheme.The main challenge in designing a replication scheme for transaction processingsystems is ensuring that the replicas state does not diverge while allowing a high degree of concurrency. We have developed two novel concurrency control protocols, commit barrier scheduling (CBS) and snapshot epoch scheduling (SES) that provide strong consistency and good performance. The two protocols provide different types of consistency: CBS provides single-copy serializability and SES provides single-copy snapshot isolation. We have implemented both protocols in the context of a replicated SQL database. Our implementation has been tested with production versions of several commercial and open source databases as replicas. Our experiments show a configuration that can tolerate one faulty replica has only a modest performance overhead (about 10-20% for the TPC-C benchmark). Our implementation successfully masks several Byzantine faults observed in practice and we have used it to find a new bug in MySQL

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future

    Incremental parallel and distributed systems

    Get PDF
    Incremental computation strives for efficient successive runs of applications by re-executing only those parts of the computation that are affected by a given input change instead of recomputing everything from scratch. To realize the benefits of incremental computation, researchers and practitioners are developing new systems where the application programmer can provide an efficient update mechanism for changing application data. Unfortunately, most of the existing solutions are limiting because they not only depart from existing programming models, but also require programmers to devise an incremental update mechanism (or a dynamic algorithm) on a per-application basis. In this thesis, we present incremental parallel and distributed systems that enable existing real-world applications to automatically benefit from efficient incremental updates. Our approach neither requires departure from current models of programming, nor the design and implementation of dynamic algorithms. To achieve these goals, we have designed and built the following incremental systems: (i) Incoop — a system for incremental MapReduce computation; (ii) Shredder — a GPU-accelerated system for incremental storage; (iii) Slider — a stream processing platform for incremental sliding window analytics; and (iv) iThreads — a threading library for parallel incremental computation. Our experience with these systems shows that significant performance can be achieved for existing applications without requiring any additional effort from programmers.Inkrementelle Berechnungen ermöglichen die effizientere Ausführung aufeinanderfolgender Anwendungsaufrufe, indem nur die Teilbereiche der Anwendung erneut ausgefürt werden, die von den Änderungen der Eingabedaten betroffen sind. Dieses Berechnungsverfahren steht dem konventionellen und vollständig neu berechnenden Verfahren gegenüber. Um den Vorteil inkrementeller Berechnungen auszunutzen, entwickeln sowohl Wissenschaft als auch Industrie neue Systeme, bei denen der Anwendungsprogrammierer den effizienten Aktualisierungsmechanismus für die Änderung der Anwendungsdaten bereitstellt. Bedauerlicherweise lassen sich existierende Lösungen meist nur eingeschränkt anwenden, da sie das konventionelle Programmierungsmodel beibehalten und dadurch die erneute Entwicklung vom Programmierer des inkrementellen Aktualisierungsmechanismus (oder einen dynamischen Algorithmus) für jede Anwendung verlangen. Diese Doktorarbeit stellt inkrementelle Parallele- und Verteiltesysteme vor, die es existierenden Real-World-Anwendungen ermöglichen vom Vorteil der inkre- mentellen Berechnung automatisch zu profitieren. Unser Ansatz erfordert weder eine Abkehr von gegenwärtigen Programmiermodellen, noch Design und Implementierung von anwendungsspezifischen dynamischen Algorithmen. Um dieses Ziel zu erreichen, haben wir die folgenden Systeme zur inkrementellen parallelen und verteilten Berechnung entworfen und implementiert: (i) Incoop — ein System für inkrementelle Map-Reduce-Programme; (ii) Shredder — ein GPU- beschleunigtes System zur inkrementellen Speicherung; (iii) Slider — eine Plat- tform zur Batch-basierten Streamverarbeitung via inkrementeller Sliding-Window- Berechnung; und (iv) iThreads — eine Threading-Bibliothek zur parallelen inkre- mentellen Berechnung. Unsere Erfahrungen mit diesen Systemen zeigen, dass unsere Methoden sehr gute Performanz liefern können, und dies ohne weiteren Aufwand des Programmierers
    corecore