1,596 research outputs found

    Interaction Grammars

    Get PDF
    Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities express the resource sensitivity of natural languages by modelling the distinction between saturated and unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are constraint systems using the notion of tree description and parsing appears as a process of building tree description models satisfying criteria of saturation and minimality

    Natural Language Processing

    Get PDF
    The subject of Natural Language Processing can be considered in both broad and narrow senses. In the broad sense, it covers processing issues at all levels of natural language understanding, including speech recognition, syntactic and semantic analysis of sentences, reference to the discourse context (including anaphora, inference of referents, and more extended relations of discourse coherence and narrative structure), conversational inference and implicature, and discourse planning and generation. In the narrower sense, it covers the syntactic and semantic processing sentences to deliver semantic objects suitable for referring, inferring, and the like. Of course, the results of inference and reference may under some circumstances play a part in processing in the narrow sense. But the processes that are characteristic of these other modules are not the primary concern

    From news to comment: Resources and benchmarks for parsing the language of web 2.0

    Get PDF
    We investigate the problem of parsing the noisy language of social media. We evaluate four all-Street-Journal-trained statistical parsers (Berkeley, Brown, Malt and MST) on a new dataset containing 1,000 phrase structure trees for sentences from microblogs (tweets) and discussion forum posts. We compare the four parsers on their ability to produce Stanford dependencies for these Web 2.0 sentences. We find that the parsers have a particular problem with tweets and that a substantial part of this problem is related to POS tagging accuracy. We attempt three retraining experiments involving Malt, Brown and an in-house Berkeley-style parser and obtain a statistically significant improvement for all three parsers

    A Processing Model for Free Word Order Languages

    Get PDF
    Like many verb-final languages, Germn displays considerable word-order freedom: there is no syntactic constraint on the ordering of the nominal arguments of a verb, as long as the verb remains in final position. This effect is referred to as ``scrambling'', and is interpreted in transformational frameworks as leftward movement of the arguments. Furthermore, arguments from an embedded clause may move out of their clause; this effect is referred to as ``long-distance scrambling''. While scrambling has recently received considerable attention in the syntactic literature, the status of long-distance scrambling has only rarely been addressed. The reason for this is the problematic status of the data: not only is long-distance scrambling highly dependent on pragmatic context, it also is strongly subject to degradation due to processing constraints. As in the case of center-embedding, it is not immediately clear whether to assume that observed unacceptability of highly complex sentences is due to grammatical restrictions, or whether we should assume that the competence grammar does not place any restrictions on scrambling (and that, therefore, all such sentences are in fact grammatical), and the unacceptability of some (or most) of the grammatically possible word orders is due to processing limitations. In this paper, we will argue for the second view by presenting a processing model for German.Comment: 23 pages, uuencoded compressed ps file. In {\em Perspectives on Sentence Processing}, C. Clifton, Jr., L. Frazier and K. Rayner, editors. Lawrence Erlbaum Associates, 199

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP
    corecore