20,902 research outputs found

    Networks of Evolutionary Processors: Java Implementation of a Threaded Processor

    Get PDF
    This paper is focused on a parallel JAVA implementation of a processor defined in a Network of Evolutionary Processors. Processor description is based on JDom, which provides a complete, Java-based solution for accessing, manipulating, and outputting XML data from Java code. Communication among different processor to obtain a fully functional simulation of a Network of Evolutionary Processors will be treated in future. A safe-thread model of processors performs all parallel operations such as rules and filters. A non-deterministic behavior of processors is achieved with a thread for each rule and for each filter (input and output). Different results of a processor evolution are shown

    Regular Expression Matching and Operational Semantics

    Full text link
    Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.Comment: In Proceedings SOS 2011, arXiv:1108.279

    Transparent Replication Using Metaprogramming in Cyan

    Full text link
    Replication can be used to increase the availability of a service by creating many operational copies of its data called replicas. Active replication is a form of replication that has strong consistency semantics, easier to reason about and program. However, creating replicated services using active replication still demands from the programmer the knowledge of subtleties of the replication mechanism. In this paper we show how to use the metaprogramming infrastructure of the Cyan language to shield the application programmer from these details, allowing easier creation of fault-tolerant replicated applications through simple annotations.Comment: 8 page

    Producing Scheduling that Causes Concurrent Programs to Fail

    Get PDF
    A noise maker is a tool that seeds a concurrent program with conditional synchronization primitives (such as yield()) for the purpose of increasing the likelihood that a bug manifest itself. This work explores the theory and practice of choosing where in the program to induce such thread switches at runtime. We introduce a novel fault model that classifies locations as .good., .neutral., or .bad,. based on the effect of a thread switch at the location. Using the model we explore the terms in which efficient search for real-life concurrent bugs can be carried out. We accordingly justify the use of probabilistic algorithms for this search and gain a deeper insight of the work done so far on noise-making. We validate our approach by experimenting with a set of programs taken from publicly available multi-threaded benchmark. Our empirical evidence demonstrates that real-life behavior is similar to what our model predicts

    Reactive Programming of Simulations in Physics

    Full text link
    We consider the Reactive Programming (RP) approach to simulate physical systems. The choice of RP is motivated by the fact that RP genuinely offers logical parallelism, instantaneously broadcast events, and dynamic creation/destruction of parallel components and events. To illustrate our approach, we consider the implementation of a system of Molecular Dynamics, in the context of Java with the Java3D library for 3D visualisation

    Reactive concurrent programming revisited

    Get PDF
    In this note we revisit the so-called reactive programming style, which evolves from the synchronous programming model of the Esterel language by weakening the assumption that the absence of an event can be detected instantaneously. We review some research directions that have been explored since the emergence of the reactive model ten years ago. We shall also outline some questions that remain to be investigated

    Execution replay and debugging

    Full text link
    As most parallel and distributed programs are internally non-deterministic -- consecutive runs with the same input might result in a different program flow -- vanilla cyclic debugging techniques as such are useless. In order to use cyclic debugging tools, we need a tool that records information about an execution so that it can be replayed for debugging. Because recording information interferes with the execution, we must limit the amount of information and keep the processing of the information fast. This paper contains a survey of existing execution replay techniques and tools.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AADebug 2000), August 2000, Munich. cs.SE/001003
    • …
    corecore