1,509 research outputs found

    The potential of programmable logic in the middle: cache bleaching

    Full text link
    Consolidating hard real-time systems onto modern multi-core Systems-on-Chip (SoC) is an open challenge. The extensive sharing of hardware resources at the memory hierarchy raises important unpredictability concerns. The problem is exacerbated as more computationally demanding workload is expected to be handled with real-time guarantees in next-generation Cyber-Physical Systems (CPS). A large body of works has approached the problem by proposing novel hardware re-designs, and by proposing software-only solutions to mitigate performance interference. Strong from the observation that unpredictability arises from a lack of fine-grained control over the behavior of shared hardware components, we outline a promising new resource management approach. We demonstrate that it is possible to introduce Programmable Logic In-the-Middle (PLIM) between a traditional multi-core processor and main memory. This provides the unique capability of manipulating individual memory transactions. We propose a proof-of-concept system implementation of PLIM modules on a commercial multi-core SoC. The PLIM approach is then leveraged to solve long-standing issues with cache coloring. Thanks to PLIM, colored sparse addresses can be re-compacted in main memory. This is the base principle behind the technique we call Cache Bleaching. We evaluate our design on real applications and propose hypervisor-level adaptations to showcase the potential of the PLIM approach.Accepted manuscrip

    A first look at RISC-V virtualization from an embedded systems perspective

    Get PDF
    This article describes the first public implementation and evaluation of the latest version of the RISC-V hypervisor extension (H-extension v0.6.1) specification in a Rocket chip core. To perform a meaningful evaluation for modern multi-core embedded and mixedcriticality systems, we have ported Bao, an open-source static partitioning hypervisor, to RISC-V. We have also extended the RISC-V platformlevel interrupt controller (PLIC) to enable direct guest interrupt injection with low and deterministic latency and we have enhanced the timer infrastructure to avoid trap and emulation overheads. Experiments were carried out in FireSim, a cycle-accurate, FPGA-accelerated simulator, and the system was also successfully deployed and tested in a Zynq UltraScale+ MPSoC ZCU104. Our hardware implementation was opensourced and is currently in use by the RISC-V community towards the ratification of the H-extension specification.This work has been supported by FCT - undação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has also been supported by FCT within the PhD Scholarship Project Scope: SFRH/BD/138660/2018

    Cache-based Timing Side-channels in Partitioning Hypervisors

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresIn recent years, the automotive industry has seen a technology complexity increase to comply with computing innovations such as autonomous driving, connectivity and mobility. As such, the need to reduce this complexity without compromising the intended metrics is imperative. The advent of hypervisors in the automotive domain presents a solution to reduce the complexity of the systems by enabling software portability and isolation between virtual machines (VMs). Although virtualization creates the illusion of strict isolation and exclusive resource access, the convergence of critical and non-critical systems into shared chips presents a security problem. This shared hardware has microarchitectural features that can be exploited through their temporal behavior, creating sensitive data leakage channels between co-located VMs. In mixed-criticality systems, the exploitation of these channels can lead to safety issues on systems with real-time constraints compromising the whole system. The implemented side-channel attacks demonstrated well-defined channels, across two real-time partitioning hypervisors in mixed-criticality systems, that enable the inference of a co-located VM’s cache activity. Furthermore, these channels have proven to be mitigated using cache coloring as a countermeasure, thus increasing the determinism of the system in detriment of average performance. From a safety perspective, this dissertation emphasizes the need to weigh the tradeoffs of the trending architectural features that target performance over predictability and determinism.Nos últimos anos, a indústria automotiva tem sido objeto de um crescendo na sua complexidade tecnológica de maneira a manter-se a par das mais recentes inovações de computação. Sendo assim, a necessidade de reduzir a complexidade sem comprometer as métricas pretendidas é imperativa. O advento dos hipervisores na indústria automotiva apresenta uma solução para a redução da complexidade dos sistemas, possiblitando a portabilidade do software e o isolamento entrevirtual vachines (VMs). Embora a virtualização crie a ilusão de isolamento e acesso exclusivo a recursos, a convergência de sistemas críticos e não-críticos em chips partilhados representa um problema de segurança. O hardware partilhado tem características microarquiteturais que podem ser exploradas através do seu comportamento temporal, criando canais de fuga de informação crítica entre VMs adjacentes. Em sistemas de criticalidade mista, a exploração destes canais pode comprometer sistemas com limitações de tempo real. Os ataques side-channel implementados revelam canais bem definidos que possibilitam a inferência da atividade de cache de VMs situadas no mesmo processador. Além disso, esses canais provaram serem passíveis de ser mitigados usando cache coloring como estratégia de mitigação, aumentando assim o determinismo do sistema em detrimento da sua performance. De uma perspetiva da segurança, esta dissertação enfatiza a necessidade de pesar os tradeoffs das tendências arquiteturais que priorizam a performance e secundarizam o determinismo e previsibilidade do sistema

    IRQ Coloring: Mitigating Interrupt-Generated Interference on ARM Multicore Platforms

    Get PDF
    Mixed-criticality systems, which consolidate workloads with different criticalities, must comply with stringent spatial and temporal isolation requirements imposed by safety-critical standards (e.g., ISO26262). This, per se, has proven to be a challenge with the advent of multicore platforms due to the inner interference created by multiple subsystems while disputing access to shared resources. With this work, we pioneer the concept of Interrupt (IRQ) coloring as a novel mechanism to minimize the interference created by co-existing interrupt-driven workloads. The main idea consists of selectively deactivating specific ("colored") interrupts if the QoS of critical workloads (e.g., Virtual Machines) drops below a well-defined threshold. The IRQ Coloring approach encompasses two artifacts, i.e., the IRQ Coloring Design-Time Tool (IRQ DTT) and the IRQ Coloring Run-Time Mechanism (IRQ RTM). In this paper, we focus on presenting the conceptual IRQ coloring design, describing the first prototype of the IRQ RTM on Bao hypervisor, and providing initial evidence about the effectiveness of the proposed approach on a synthetic use case

    A Perspective on Safety and Real-Time Issues for GPU Accelerated ADAS

    Get PDF
    The current trend in designing Advanced Driving Assistance System (ADAS) is to enhance their computing power by using modern multi/many core accelerators. For many critical applications such as pedestrian detection, line following, and path planning the Graphic Processing Unit (GPU) is the most popular choice for obtaining orders of magnitude increases in performance at modest power consumption. This is made possible by exploiting the general purpose nature of today's GPUs, as such devices are known to express unprecedented performance per watt on generic embarrassingly parallel workloads (as opposed of just graphical rendering, as GPUs where only designed to sustain in previous generations). In this work, we explore novel challenges that system engineers have to face in terms of real-time constraints and functional safety when the GPU is the chosen accelerator. More specifically, we investigate how much of the adopted safety standards currently applied for traditional platforms can be translated to a GPU accelerated platform used in critical scenarios

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    A Memory Scheduling Infrastructure for Multi-Core Systems with Re-Programmable Logic

    Get PDF
    The sharp increase in demand for performance has prompted an explosion in the complexity of modern multi-core embedded systems. This has lead to unprecedented temporal unpredictability concerns in Cyber-Physical Systems (CPS). On-chip integration of programmable logic (PL) alongside a conventional Processing System (PS) in modern Systems-on-Chip (SoC) establishes a genuine compromise between specialization, performance, and reconfigurability. In addition to typical use-cases, it has been shown that the PL can be used to observe, manipulate, and ultimately manage memory traffic generated by a traditional multi-core processor. This paper explores the possibility of PL-aided memory scheduling by proposing a Scheduler In-the-Middle (SchIM). We demonstrate that the SchIM enables transaction-level control over the main memory traffic generated by a set of embedded cores. Focusing on extensibility and reconfigurability, we put forward a SchIM design covering two main objectives. First, to provide a safe playground to test innovative memory scheduling mechanisms; and second, to establish a transition path from software-based memory regulation to provably correct hardware-enforced memory scheduling. We evaluate our design through a full-system implementation on a commercial PS-PL platform using synthetic and real-world benchmarks

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

    Get PDF
    Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf (COTS) multiprocessor systems to exploit their high performance for real-time applications. Several solutions proposed in the real-time literature have hardware requirements that are not easily satisfied by modern COTS platforms, like hardware support for strict memory partitioning or the presence of scratchpads. However, even without said hardware support, it is possible to design an efficient memory-centric scheduler. In this article, we design, implement, and analyze a memory-centric scheduler for deterministic memory management on COTS multiprocessor platforms without any hardware support. Our approach uses fixed-priority scheduling and proposes a global "memory preemption" scheme to boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of schedulability when compared to contention-based and static fair-share approaches
    • …
    corecore