4 research outputs found

    The zheng-seberry public key cryptosystem and signcryption

    Get PDF
    In 1993 Zheng-Seberry presented a public key cryptosystem that was considered efficient and secure in the sense of indistinguishability of encryptions (IND) against an adaptively chosen ciphertext adversary (CCA2). This thesis shows the Zheng-Seberry scheme is not secure as a CCA2 adversary can break the scheme in the sense of IND. In 1998 Cramer-Shoup presented a scheme that was secure against an IND-CCA2 adversary and whose proof relied only on standard assumptions. This thesis modifies this proof and applies it to a modified version of the El-Gamal scheme. This resulted in a provably secure scheme relying on the Random Oracle (RO) model, which is more efficient than the original Cramer-Shoup scheme. Although the RO model assumption is needed for security of this new El-Gamal variant, it only relies on it in a minimal way

    Trapdoor commitment schemes and their applications

    Get PDF
    Informally, commitment schemes can be described by lockable steely boxes. In the commitment phase, the sender puts a message into the box, locks the box and hands it over to the receiver. On one hand, the receiver does not learn anything about the message. On the other hand, the sender cannot change the message in the box anymore. In the decommitment phase the sender gives the receiver the key, and the receiver then opens the box and retrieves the message. One application of such schemes are digital auctions where each participant places his secret bid into a box and submits it to the auctioneer. In this thesis we investigate trapdoor commitment schemes. Following the abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a tiny secret door. If someone knows the secret door, then this person is still able to change the committed message in the box, even after the commitment phase. Such trapdoors turn out to be very useful for the design of secure cryptographic protocols involving commitment schemes. In the first part of the thesis, we formally introduce trapdoor commitments and extend the notion to identity-based trapdoors, where trapdoors can only be used in connection with certain identities. We then recall the most popular constructions of ordinary trapdoor protocols and present new solutions for identity-based trapdoors. In the second part of the thesis, we show the usefulness of trapdoors in commitment schemes. Deploying trapdoors we construct efficient non-malleable commitment schemes which basically guarantee indepency of commitments. Furthermore, applying (identity-based) trapdoor commitments we secure well-known identification protocols against a new kind of attack. And finally, by means of trapdoors, we show how to construct composable commitment schemes that can be securely executed as subprotocols within complex protocols

    Advances in cryptographic voting systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 241-254).Democracy depends on the proper administration of popular elections. Voters should receive assurance that their intent was correctly captured and that all eligible votes were correctly tallied. The election system as a whole should ensure that voter coercion is unlikely, even when voters are willing to be influenced. These conflicting requirements present a significant challenge: how can voters receive enough assurance to trust the election result, but not so much that they can prove to a potential coercer how they voted? This dissertation explores cryptographic techniques for implementing verifiable, secret-ballot elections. We present the power of cryptographic voting, in particular its ability to successfully achieve both verifiability and ballot secrecy, a combination that cannot be achieved by other means. We review a large portion of the literature on cryptographic voting. We propose three novel technical ideas: 1. a simple and inexpensive paper-base cryptographic voting system with some interesting advantages over existing techniques, 2. a theoretical model of incoercibility for human voters with their inherent limited computational ability, and a new ballot casting system that fits the new definition, and 3. a new theoretical construct for shuffling encrypted votes in full view of public observers.by Ben Adida.Ph.D
    corecore