6,321 research outputs found

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    On Algorithms and Complexity for Sets with Cardinality Constraints

    Get PDF
    Typestate systems ensure many desirable properties of imperative programs, including initialization of object fields and correct use of stateful library interfaces. Abstract sets with cardinality constraints naturally generalize typestate properties: relationships between the typestates of objects can be expressed as subset and disjointness relations on sets, and elements of sets can be represented as sets of cardinality one. Motivated by these applications, this paper presents new algorithms and new complexity results for constraints on sets and their cardinalities. We study several classes of constraints and demonstrate a trade-off between their expressive power and their complexity. Our first result concerns a quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. We give a nondeterministic polynomial-time algorithm for reducing the satisfiability of sets with symbolic cardinalities to constraints on constant cardinalities, and give a polynomial-space algorithm for the resulting problem. In a quest for more efficient fragments, we identify several subclasses of sets with cardinality constraints whose satisfiability is NP-hard. Finally, we identify a class of constraints that has polynomial-time satisfiability and entailment problems and can serve as a foundation for efficient program analysis.Comment: 20 pages. 12 figure

    Shortest Path in a Polygon using Sublinear Space

    Get PDF
    \renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon \Polygon with nn vertices in a read only memory, and additional working memory of size \Space, the new algorithm computes the shortest path (in \Polygon) in O( n^2 /\, \Space ) expected time. This requires several new tools, which we believe to be of independent interest
    • …
    corecore