12,632 research outputs found

    Faster Gossiping in Bidirectional Radio Networks with Large Labels

    Full text link
    We consider unknown ad-hoc radio networks, when the underlying network is bidirectional and nodes can have polynomially large labels. For this model, we present a deterministic protocol for gossiping which takes O(nlg2nlglgn)O(n \lg^2 n \lg \lg n) rounds. This improves upon the previous best result for deterministic gossiping for this model by [Gasienec, Potapov, Pagourtizis, Deterministic Gossiping in Radio Networks with Large labels, ESA (2002)], who present a protocol of round complexity O(nlg3nlglgn)O(n \lg^3 n \lg \lg n) for this problem. This resolves open problem posed in [Gasienec, Efficient gossiping in radio networks, SIROCCO (2009)], who cite bridging gap between lower and upper bounds for this problem as an important objective. We emphasize that a salient feature of our protocol is its simplicity, especially with respect to the previous best known protocol for this problem

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal
    corecore