346 research outputs found

    Deterministic Autopoietic Automata

    Full text link
    This paper studies two issues related to the paper on Computing by Self-reproduction: Autopoietic Automata by Jiri Wiedermann. It is shown that all results presented there extend to deterministic computations. In particular, nondeterminism is not needed for a lineage to generate all autopoietic automata

    Toward a Self-replicating Metabolic P System

    Get PDF
    This work concerns the synthesis of a "minimal cell' by means of a P system, which is a distributed rewriting system inspired by the structure and the functioning of the biological cell. Specifically, we aim to define a dynamical system which exhibits a steady metabolic evolution, resulting in self-maintenance and self-reproduction. Metabolic P systems represent a class of P systems particularly promising to model a minimal cell in discrete terms, since they have already successfully modeled several metabolisms. The main further step is thus to find a simple way to obtain Metabolic P system self-replication. This paper deals with ideas presented at the BWMC11 (held in Seville, Feb 2011) and opens a new trend in membrane computing, based on computational synthetic biology oriented applications of P systems modeling. The framework is here outlined, and some problems to tackle the synthesis of a minimal cell are discussed. Moreover, an overview of literature and a list of appealing research directions is given, along with several references

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Sixty years of cybernetics: cybernetics still alive

    Get PDF
    summary:This informal essay, written on the occasion of 60th anniversary of Wienerian cybernetics, presents a series of themes and ideas that has emerged during last several decades and which have direct or indirect relationships to the principal concepts of cybernetics. Moreover, they share with original cybernetics the same transdisciplinary character

    The Eastern Construction of the Artificial Mind

    Get PDF
    In this paper we will analyse the possible similarities and differences between scientists dealing with AI and robotics from the West and those from the East. Another question that arises is: is there such a thing as an AI & robotics paradigm specific to Eastern research? Through the analysis of cultural, philosophical and technical aspects, this research will show that there is no real Eastern model of the artificial mind, although their background ideas have influenced world-wide research in the field deeply.En este artículo vamos a analizar las posibles semejanzas y diferencias entre los científicos que se ocupan de la IA y la robótica en Oriente y Occidente. La primera pregunta que surge es: ¿existe realmente un paradigma propio oriental para la IA y la robótica? A través del análisis de los aspectos culturales, filosóficos y técnicos, esta investigación mostrará que no hay un verdadero modelo oriental de mente artificial, aunque sus ideas filosóficas han influido profundamente a nivel mundial en esa investigación
    • …
    corecore