8,441 research outputs found

    On the Computational Power of Radio Channels

    Get PDF
    Radio networks can be a challenging platform for which to develop distributed algorithms, because the network nodes must contend for a shared channel. In some cases, though, the shared medium is an advantage rather than a disadvantage: for example, many radio network algorithms cleverly use the shared channel to approximate the degree of a node, or estimate the contention. In this paper we ask how far the inherent power of a shared radio channel goes, and whether it can efficiently compute "classicaly hard" functions such as Majority, Approximate Sum, and Parity. Using techniques from circuit complexity, we show that in many cases, the answer is "no". We show that simple radio channels, such as the beeping model or the channel with collision-detection, can be approximated by a low-degree polynomial, which makes them subject to known lower bounds on functions such as Parity and Majority; we obtain round lower bounds of the form Omega(n^{delta}) on these functions, for delta in (0,1). Next, we use the technique of random restrictions, used to prove AC^0 lower bounds, to prove a tight lower bound of Omega(1/epsilon^2) on computing a (1 +/- epsilon)-approximation to the sum of the nodes\u27 inputs. Our techniques are general, and apply to many types of radio channels studied in the literature

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201

    Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions

    Get PDF
    Let g:{1,1}k{1,1}g: \{-1,1\}^k \to \{-1,1\} be any Boolean function and q1,,qkq_1,\dots,q_k be any degree-2 polynomials over {1,1}n.\{-1,1\}^n. We give a \emph{deterministic} algorithm which, given as input explicit descriptions of g,q1,,qkg,q_1,\dots,q_k and an accuracy parameter \eps>0, approximates \Pr_{x \sim \{-1,1\}^n}[g(\sign(q_1(x)),\dots,\sign(q_k(x)))=1] to within an additive \pm \eps. For any constant \eps > 0 and k1k \geq 1 the running time of our algorithm is a fixed polynomial in nn. This is the first fixed polynomial-time algorithm that can deterministically approximately count satisfying assignments of a natural class of depth-3 Boolean circuits. Our algorithm extends a recent result \cite{DDS13:deg2count} which gave a deterministic approximate counting algorithm for a single degree-2 polynomial threshold function \sign(q(x)), corresponding to the k=1k=1 case of our result. Our algorithm and analysis requires several novel technical ingredients that go significantly beyond the tools required to handle the k=1k=1 case in \cite{DDS13:deg2count}. One of these is a new multidimensional central limit theorem for degree-2 polynomials in Gaussian random variables which builds on recent Malliavin-calculus-based results from probability theory. We use this CLT as the basis of a new decomposition technique for kk-tuples of degree-2 Gaussian polynomials and thus obtain an efficient deterministic approximate counting algorithm for the Gaussian distribution. Finally, a third new ingredient is a "regularity lemma" for \emph{kk-tuples} of degree-dd polynomial threshold functions. This generalizes both the regularity lemmas of \cite{DSTW:10,HKM:09} and the regularity lemma of Gopalan et al \cite{GOWZ10}. Our new regularity lemma lets us extend our deterministic approximate counting results from the Gaussian to the Boolean domain

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials
    corecore