26,127 research outputs found

    A Probabilistic Interpretation of Sampling Theory of Graph Signals

    Full text link
    We give a probabilistic interpretation of sampling theory of graph signals. To do this, we first define a generative model for the data using a pairwise Gaussian random field (GRF) which depends on the graph. We show that, under certain conditions, reconstructing a graph signal from a subset of its samples by least squares is equivalent to performing MAP inference on an approximation of this GRF which has a low rank covariance matrix. We then show that a sampling set of given size with the largest associated cut-off frequency, which is optimal from a sampling theoretic point of view, minimizes the worst case predictive covariance of the MAP estimate on the GRF. This interpretation also gives an intuitive explanation for the superior performance of the sampling theoretic approach to active semi-supervised classification.Comment: 5 pages, 2 figures, To appear in International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    Canonical correlation analysis of high-dimensional data with very small sample support

    Get PDF
    This paper is concerned with the analysis of correlation between two high-dimensional data sets when there are only few correlated signal components but the number of samples is very small, possibly much smaller than the dimensions of the data. In such a scenario, a principal component analysis (PCA) rank-reduction preprocessing step is commonly performed before applying canonical correlation analysis (CCA). We present simple, yet very effective approaches to the joint model-order selection of the number of dimensions that should be retained through the PCA step and the number of correlated signals. These approaches are based on reduced-rank versions of the Bartlett-Lawley hypothesis test and the minimum description length information-theoretic criterion. Simulation results show that the techniques perform well for very small sample sizes even in colored noise

    Estimation of the Number of Sources in Unbalanced Arrays via Information Theoretic Criteria

    Full text link
    Estimating the number of sources impinging on an array of sensors is a well known and well investigated problem. A common approach for solving this problem is to use an information theoretic criterion, such as Minimum Description Length (MDL) or the Akaike Information Criterion (AIC). The MDL estimator is known to be a consistent estimator, robust against deviations from the Gaussian assumption, and non-robust against deviations from the point source and/or temporally or spatially white additive noise assumptions. Over the years several alternative estimation algorithms have been proposed and tested. Usually, these algorithms are shown, using computer simulations, to have improved performance over the MDL estimator, and to be robust against deviations from the assumed spatial model. Nevertheless, these robust algorithms have high computational complexity, requiring several multi-dimensional searches. In this paper, motivated by real life problems, a systematic approach toward the problem of robust estimation of the number of sources using information theoretic criteria is taken. An MDL type estimator that is robust against deviation from assumption of equal noise level across the array is studied. The consistency of this estimator, even when deviations from the equal noise level assumption occur, is proven. A novel low-complexity implementation method avoiding the need for multi-dimensional searches is presented as well, making this estimator a favorable choice for practical applications.Comment: To appear in the IEEE Transactions on Signal Processin

    Optimal Sequential Investigation Rules in Competition Law

    Get PDF
    Although both in US antitrust and European competition law there is a clear evolution to a much broader application of "rule of reason" (instead of per-se rules), there is also an increasing awareness of the problems of a case-by-case approach. The "error costs approach" (minimizing the sum of welfare costs of decision errors and administrative costs) allows not only to decide between these two extremes, but also to design optimally differentiated rules (with an optimal depth of investigation) as intermediate solutions between simple per-se rules and a fullscale rule of reason. In this paper we present a decision-theoretic model that can be used as an instrument for deriving optimal rules for a sequential investigation process in competition law. Such a sequential investigation can be interpreted as a step-by-step sorting process into ever smaller subclasses of cases that help to discriminate better between pro- and anticompetitive cases. We analyze both the problem of optimal stopping of the investigation and optimal sequencing of the assessment criteria in an investigation. To illustrate, we show how a more differentiated rule on resale price maintenance could be derived after the rejection of its per-se prohibition by the US Supreme Court in the "Leegin" case 2007.Law Enforcement, Decision-Making, Competition Law, Antitrust Law

    Minimax rank estimation for subspace tracking

    Full text link
    Rank estimation is a classical model order selection problem that arises in a variety of important statistical signal and array processing systems, yet is addressed relatively infrequently in the extant literature. Here we present sample covariance asymptotics stemming from random matrix theory, and bring them to bear on the problem of optimal rank estimation in the context of the standard array observation model with additive white Gaussian noise. The most significant of these results demonstrates the existence of a phase transition threshold, below which eigenvalues and associated eigenvectors of the sample covariance fail to provide any information on population eigenvalues. We then develop a decision-theoretic rank estimation framework that leads to a simple ordered selection rule based on thresholding; in contrast to competing approaches, however, it admits asymptotic minimax optimality and is free of tuning parameters. We analyze the asymptotic performance of our rank selection procedure and conclude with a brief simulation study demonstrating its practical efficacy in the context of subspace tracking.Comment: 10 pages, 4 figures; final versio
    corecore