686 research outputs found

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Geometrical properties of rigid frictionless granular packings as a function of particle size and shape

    Full text link
    Three-dimensional discrete numerical simulation is used to investigate the properties of close-packed frictionless granular assemblies as a function of particle polydispersity and shape. Unlike some experimental results, simulations show that disordered packings of pinacoids (eight-face convex polyhedron) achieve higher solid fraction values than amorphous packings of spherical or rounded particles, thus fulfilling the analogue of Ulam's conjecture stated by Jiao and co-workers for random packings [Y. Jiao and S. Torquato, Phys. Rev. E 84\textbf{84}, 041309041309 (20112011)]. This seeming discrepancy between experimental and numerical results is believed to lie with difficulties in overcoming interparticle friction through experimental densification processes. Moreover, solid fraction is shown to increase further with bidispersity and peak when the volume proportion of small particles reaches 30%30\%. Contrarywise, substituting up to 50%50\% of flat pinacoids for isometric ones yields solid fraction decrease, especially when flat particles are also elongated. Nevertheless, particle shape seems to play a minor role on packing solid fraction compared to polydispersity. Additional investigations focused on the packing microstructure confirm that pinacoid packings fulfill the isostatic conjecture and that they are free of order except beyond 3030 to 50%50\% of flat or flat \& elongated polyhedra in the packing. This order increase progressively takes the form of a nematic phase caused by the reorientation of flat or flat \& elongated particles to minimize the packing potential energy. Simultaneously, this reorientation seems to increase the solid fraction value slightly above the maximum achieved by monodisperse isometric pinacoids, as well as the coordination number. Finally, partial substitution of elongated pinacoids for isometric ones has limited effect on packing solid fraction or order.Comment: 12 figures, 12 page

    Robust Procedures for Obtaining Assembly Contact State Extremal Configurations

    Get PDF
    Two important components in the selection of an admittance that facilitates force-guided assembly are the identification of: 1) the set of feasible contact states, and 2) the set of configurations that span each contact state, i.e., the extremal configurations. We present a procedure to automatically generate both sets from CAD models of the assembly parts. In the procedure, all possible combinations of principle contacts are considered when generating hypothesized contact states. The feasibility of each is then evaluated in a genetic algorithm based optimization procedure. The maximum and minimum value of each of the 6 configuration variables spanning each contact state are obtained by again using genetic algorithms. Together, the genetic algorithm approach, the hierarchical data structure containing the states, the relationships among the states, and the extremals within each state are used to provide a reliable means of identifying all feasible contact states and their associated extremal configurations

    Equilibrium Phase Behavior and Maximally Random Jammed State of Truncated Tetrahedra

    Full text link
    Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. We find that such MRJ packings are hyperuniform with an average packing fraction of 0.770, which is considerably larger than the corresponding value for identical spheres (about 0.64). We conclude with some simple observations concerning what types of phase transitions might be expected in general hard-particle systems based on the particle shape and which would be good glass formers

    Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes

    Get PDF
    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces

    An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues

    Get PDF
    The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems
    corecore