3,535 research outputs found

    Phased burst error-correcting array codes

    Get PDF
    Various aspects of single-phased burst-error-correcting array codes are explored. These codes are composed of two-dimensional arrays with row and column parities with a diagonally cyclic readout order; they are capable of correcting a single burst error along one diagonal. Optimal codeword sizes are found to have dimensions n1×n2 such that n2 is the smallest prime number larger than n1. These codes are capable of reaching the Singleton bound. A new type of error, approximate errors, is defined; in q-ary applications, these errors cause data to be slightly corrupted and therefore still close to the true data level. Phased burst array codes can be tailored to correct these codes with even higher rates than befor

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Error Patterns

    Get PDF
    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are (0,1)(0,1)-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word, usually the one for which the error vector has minimum Hamming weight is chosen. In this note some remarks are made on the problem of the elements 1 in the error vector, that may enable unique decoding, in case two or more code words have the same Hamming distance to the received message word, thus turning error detection into error correction. The essentially new aspect is that code words, message words and error vectors are put in one-one correspondence with graphs

    Algoritmos eficientes de bĂșsqueda de cĂłdigos cĂ­clicos y cĂ­clicos acortados correctores de rĂĄfagas de errores

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informåtica, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 30/01/2013Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformåticaTRUEUniversidad Complutense de MadridAgencia Española de Cooperación Internacional para el Desarrollo (AECID)unpu

    Interleaving schemes for multidimensional cluster errors

    Get PDF
    We present two-dimensional and three-dimensional interleaving techniques for correcting two- and three-dimensional bursts (or clusters) of errors, where a cluster of errors is characterized by its area or volume. Correction of multidimensional error clusters is required in holographic storage, an emerging application of considerable importance. Our main contribution is the construction of efficient two-dimensional and three-dimensional interleaving schemes. The proposed schemes are based on t-interleaved arrays of integers, defined by the property that every connected component of area or volume t consists of distinct integers. In the two-dimensional case, our constructions are optimal: they have the lowest possible interleaving degree. That is, the resulting t-interleaved arrays contain the smallest possible number of distinct integers, hence minimizing the number of codewords required in an interleaving scheme. In general, we observe that the interleaving problem can be interpreted as a graph-coloring problem, and introduce the useful special class of lattice interleavers. We employ a result of Minkowski, dating back to 1904, to establish both upper and lower bounds on the interleaving degree of lattice interleavers in three dimensions. For the case t≡0 mod 6, the upper and lower bounds coincide, and the Minkowski lattice directly yields an optimal lattice interleaver. For t≠0 mod 6, we construct efficient lattice interleavers using approximations of the Minkowski lattice

    Algoritmos eficientes de bĂșsqueda de cĂłdigos cĂ­clicos y cĂ­clicos acortados correctores de rĂĄfagas mĂșltiples de errores

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informåtica, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 11-09-2014Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformåticaTRUEunpu

    Concurrent codes:a holographic-type encoding robust against noise and loss

    Get PDF
    Concurrent coding is an encoding scheme with 'holographic' type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated

    A study of performance and complexity for IEEE 802.11n MIMO-OFDM GIS solutions

    Get PDF
    • 

    corecore