235,436 research outputs found

    Freeze-drying modeling and monitoring using a new neuro-evolutive technique

    Get PDF
    This paper is focused on the design of a black-box model for the process of freeze-drying of pharmaceuticals. A new methodology based on a self-adaptive differential evolution scheme is combined with a back-propagation algorithm, as local search method, for the simultaneous structural and parametric optimization of the model represented by a neural network. Using the model of the freeze-drying process, both the temperature and the residual ice content in the product vs. time can be determine off-line, given the values of the operating conditions (the temperature of the heating shelf and the pressure in the drying chamber). This makes possible to understand if the maximum temperature allowed by the product is trespassed and when the sublimation drying is complete, thus providing a valuable tool for recipe design and optimization. Besides, the black box model can be applied to monitor the freeze-drying process: in this case, the measurement of product temperature is used as input variable of the neural network in order to provide in-line estimation of the state of the product (temperature and residual amount of ice). Various examples are presented and discussed, thus pointing out the strength of the too

    Run Time Approximation of Non-blocking Service Rates for Streaming Systems

    Full text link
    Stream processing is a compute paradigm that promises safe and efficient parallelism. Modern big-data problems are often well suited for stream processing's throughput-oriented nature. Realization of efficient stream processing requires monitoring and optimization of multiple communications links. Most techniques to optimize these links use queueing network models or network flow models, which require some idea of the actual execution rate of each independent compute kernel within the system. What we want to know is how fast can each kernel process data independent of other communicating kernels. This is known as the "service rate" of the kernel within the queueing literature. Current approaches to divining service rates are static. Modern workloads, however, are often dynamic. Shared cloud systems also present applications with highly dynamic execution environments (multiple users, hardware migration, etc.). It is therefore desirable to continuously re-tune an application during run time (online) in response to changing conditions. Our approach enables online service rate monitoring under most conditions, obviating the need for reliance on steady state predictions for what are probably non-steady state phenomena. First, some of the difficulties associated with online service rate determination are examined. Second, the algorithm to approximate the online non-blocking service rate is described. Lastly, the algorithm is implemented within the open source RaftLib framework for validation using a simple microbenchmark as well as two full streaming applications.Comment: technical repor

    Autonomic log/restore for advanced optimistic simulation systems

    Get PDF
    In this paper we address state recoverability in optimistic simulation systems by presenting an autonomic log/restore architecture. Our proposal is unique in that it jointly provides the following features: (i) log/restore operations are carried out in a completely transparent manner to the application programmer, (ii) the simulation-object state can be scattered across dynamically allocated non-contiguous memory chunks, (iii) two differentiated operating modes, incremental vs non-incremental, coexist via transparent, optimized run-time management of dual versions of the same application layer, with dynamic selection of the best suited operating mode in different phases of the optimistic simulation run, and (iv) determinationof the best suited mode for any time frame is carried out on the basis of an innovative modeling/optimization approach that takes into account stability of each operating mode vs variations of the model execution parameters. © 2010 IEEE
    • …
    corecore