1,964 research outputs found

    Developing A Group Decision Support System (gdss) For Decision Making Under Uncertainty

    Get PDF
    Multi-Criteria Decision Making (MCDM) problems are often associated with tradeoffs between performances of the available alternative solutions under decision making criteria. These problems become more complex when performances are associated with uncertainty. This study proposes a stochastic MCDM procedure that can handle uncertainty in MCDM problems. The proposed method coverts a stochastic MCDM problem into many deterministic ones through a Monte-Carlo (MC) selection. Each deterministic problem is then solved using a range of MCDM methods and the ranking order of the alternatives is established for each deterministic MCDM. The final ranking of the alternatives can be determined based on winning probabilities and ranking distribution of the alternatives. Ranking probability distributions can help the decision-maker understand the risk associated with the overall ranking of the options. Therefore, the final selection of the best alternative can be affected by the risk tolerance of the decisionmakers. A Group Decision Support System (GDSS) is developed here with a user-friendly interface to facilitate the application of the proposed MC-MCDM approach in real-world multiparticipant decision making for an average user. The GDSS uses a range of decision making methods to increase the robustness of the decision analysis outputs and to help understand the sensitivity of the results to level of cooperation among the decision-makers. The decision analysis methods included in the GDSS are: 1) conventional MCDM methods (Maximin, Lexicographic, TOPSIS, SAW and Dominance), appropriate when there is a high cooperation level among the decision-makers; 2) social choice rules or voting methods (Condorcet Choice, Borda scoring, Plurality, Anti-Plurality, Median Voting, Hare System of voting, Majoritarian iii Compromise ,and Condorcet Practical), appropriate for cases with medium cooperation level among the decision-makers; and 3) Fallback Bargaining methods (Unanimity, Q-Approval and Fallback Bargaining with Impasse), appropriate for cases with non-cooperative decision-makers. To underline the utility of the proposed method and the developed GDSS in providing valuable insights into real-world hydro-environmental group decision making, the GDSS is applied to a benchmark example, namely the California‘s Sacramento-San Joaquin Delta decision making problem. The implications of GDSS‘ outputs (winning probabilities and ranking distributions) are discussed. Findings are compared with those of previous studies, which used other methods to solve this problem, to highlight the sensitivity of the results to the choice of decision analysis methods and/or different cooperation levels among the decision-maker

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast

    THE USEFULNESS OF ANALYTICAL TOOLS FOR SUSTAINABLE FUTURES

    Get PDF
    The aim of this study is to assess the usefulness of analytical tools for policy evaluation. The study focuses on a multi-method integrated toolkit, the so-called SMILE toolkit. This toolkit consist of the integration of three evaluation frameworks developed within an EU-funded consortium called Development and Comparison of Sustainability (DECOIN) and further applied within the consortium Synergies in Multi-Scale Inter-Linkages of Eco-social systems (SMILE). This toolkit is developed to provide reporting features that are required for monitoring policy-making. The sustainable development perspective is rather difficult to attempt due to its dynamism and its multi-dimensionality. Therefore, in this study, we aim to assess the usefulness of the SMILE toolkit to sustainable development issues on the basis of the critical factors of sustainable development. In other words, here, we will prove the usefulness of the toolkit to help policymakers to think about and work on sustainable developments in the future.

    Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty

    Get PDF
    In practice, selecting an energy project for development requires balancing criteria and competing stakeholder priorities to identify the best alternative. Energy source selection can be modeled as multi-criteria decision-maker problems to provide quantitative support to reconcile technical, economic, environmental, social, and political factors with respect to the stakeholders' interests. Decision making among these complex interactions should also account for the uncertainty present in the input data. In response, this work develops a stochastic decision analysis framework to evaluate alternatives by involving stakeholders to identify both quantitative and qualitative selection criteria and performance metrics which carry uncertainties. The developed framework is illustrated using a case study from Fairbanks, Alaska, where decision makers and residents must decide on a new source of energy for heating and electricity. We approach this problem in a five step methodology: (1) engaging experts (role players) to develop criteria of project performance; (2) collecting a range of quantitative and qualitative input information to determine the performance of each proposed solution according to the selected criteria; (3) performing a Monte-Carlo analysis to capture uncertainties given in the inputs; (4) applying multi-criteria decision-making, social choice (voting), and fallback bargaining methods to account for three different levels of cooperation among the stakeholders; and (5) computing an aggregate performance index (API) score for each alternative based on its performance across criteria and cooperation levels. API scores communicate relative performance between alternatives. In this way, our methodology maps uncertainty from the input data to reflect risk in the decision and incorporates varying degrees of cooperation into the analysis to identify an optimal and practical alternative

    Analytical support tools for sustainable futures

    Get PDF
    The aim of this study is to assess the usefulness of analytical tools for policy evaluation. The study focuses on a multi‐method integrated toolkit for sustainability assessment, the so‐called SMILE toolkit 1. This toolkit is developed to provide salient features that are required for monitoring policy‐making in a spatial‐environmental context. The sustainable development perspective is rather difficult to operationalize due to its dynamism and its multi- dimensionality. Therefore, in this study, we aim to assess the usefulness of the SMILE toolkit for sustainable development issues on the basis of a systemic set of critical factors for sustainable development. We will demonstrate the usefulness of the toolkit in order to create awareness among policymakers on the critical factors for sustainable development in the future

    Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions

    Get PDF
    Energy systems planning commonly involves the study of supply and demand of power, forecasting the trends of parameters established on economics and technical criteria of models. Numerous measures are needed for the fulfillment of energy system assessment and the investment plans. The higher energy prices which call for diversification of energy systems and managing the resolution of conflicts are the results of high energy demand for growing economies. Due to some challenging problems of fossil fuels, energy production and distribution from alternative sources are getting more attention. This study aimed to reveal the most proper energy systems in Saudi Arabia for investment. Hence, integrated fuzzy AHP (Analytic Hierarchy Process), fuzzy VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) and TOPSIS (Technique for Order Preferences by Similarity to Idle Solution) methodologies were employed to determine the most eligible energy systems for investment. Eight alternative energy systems were assessed against nine criteria—power generation capacity, efficiency, storability, safety, air pollution, being depletable, net present value, enhanced local economic development, and government support. Data were collected using the Delphi method, a team of three decision-makers (DMs) was established in a heterogeneous manner with the addition of nine domain experts to carry out the analysis. The fuzzy AHP approach was used for clarifying the weight of criteria and fuzzy VIKOR and TOPSIS were utilized for ordering the alternative energy systems according to their investment priority. On the other hand, sensitivity analysis was carried out to determine the priority of investment for energy systems and comparison of them using the weight of group utility and fuzzy DEA (Data Envelopment Analysis) approaches. The results and findings suggested that solar photovoltaic (PV) is the paramount renewable energy system for investment, according to both fuzzy VIKOR and fuzzy TOPSIS approaches. In this context our findings were compared with other works comprehensively.This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-7-135-38). The authors, therefore, acknowledge with thanks DSR technical and financial support

    BUILDING TRUST FOR SERVICE ASSESSMENT IN INTERNET-ENABLED COLLABORATIVE PRODUCT DESIGN & REALIZATION ENVIRONMENTS

    Get PDF
    Reducing costs, increasing speed and leveraging the intelligence of partners involved during product design processes are important benefits of Internet-enabled collaborative product design and realization environments. The options for cost-effective product design, re-design or improvement are at their peak during the early stages of the design process and designers can collaborate with suppliers, manufacturers and other relevant contributors to acquire a better understanding of associated costs and product viability. Collaboration is by no means a new paradigm. However, companies have found distrust of collaborative partners to be the most intractable obstacle to collaborative commerce and Internet-enabled business especially in intellectual property environments, which handle propriety data on a constant basis. This problem is also reinforced in collaborative environments that are distributed in nature. Thus trust is the main driver or enabler of successful collaborative efforts or transactions in Internet-enabled product design environments. Focus is on analyzing the problem of ¡®trust for services¡¯ in distributed collaborative service provider assessment and selection, concentrating on characteristics specific to electronic product design (e-Design) environments. Current tools for such collaborative partner/provider assessment are inadequate or non-existent and researching network, user, communication and service trust problems, which hinder the growth and acceptance of true collaboration in product design, can foster new frontiers in manufacturing, business and technology. Trust and its associated issues within the context of a secure Internet-enabled product design & realization platform is a multifaceted and complex problem, which demands a strategic approach crossing disciplinary boundaries. A Design Environment Trust Service (DETS) framework is proposed to incorporate trust for services in product design environments based on client specified (or default) criteria. This involves the analysis of validated network (objective) data and non-network (subjective) data and the use of Multi Criteria Decision Making (MCDM) methodology for the selection of the most efficient service provision alternative through the minimization of distance from a specified ideal point and interpreted as a Dynamic (Design) Trust Index (DTI) or rank. Hence, the service requestor is provided with a quantifiable degree of belief to mitigate information asymmetry and enable knowledgeable decision-making regarding trustworthy service provision in a distributed environment
    corecore