12,652 research outputs found

    Evolution of the social network of scientific collaborations

    Full text link
    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.Comment: 14 pages, 15 figure

    Mapping the Evolution of "Clusters": A Meta-analysis

    Get PDF
    This paper presents a meta-analysis of the “cluster literature” contained in scientific journals from 1969 to 2007. Thanks to an original database we study the evolution of a stream of literature which focuses on a research object which is both a theoretical puzzle and an empirical widespread evidence. We identify different growth stages, from take-off to development and maturity. We test the existence of a life-cycle within the authorships and we discover the existence of a substitutability relation between different collaborative behaviours. We study the relationships between a “spatial” and an “industrial” approach within the textual corpus of cluster literature and we show the existence of a “predatory” interaction. We detect the relevance of clustering behaviours in the location of authors working on clusters and in measuring the influence of geographical distance in co-authorship. We measure the extent of a convergence process of the vocabulary of scientists working on clusters.Cluster, Life-Cycle, Cluster Literature, Textual Analysis, Agglomeration, Co-Authorship

    Mapping the Bid Behavior of Conference Referees

    Full text link
    The peer-review process, in its present form, has been repeatedly criticized. Of the many critiques ranging from publication delays to referee bias, this paper will focus specifically on the issue of how submitted manuscripts are distributed to qualified referees. Unqualified referees, without the proper knowledge of a manuscript's domain, may reject a perfectly valid study or potentially more damaging, unknowingly accept a faulty or fraudulent result. In this paper, referee competence is analyzed with respect to referee bid data collected from the 2005 Joint Conference on Digital Libraries (JCDL). The analysis of the referee bid behavior provides a validation of the intuition that referees are bidding on conference submissions with regards to the subject domain of the submission. Unfortunately, this relationship is not strong and therefore suggests that there exists other factors beyond subject domain that may be influencing referees to bid for particular submissions

    Overlapping modularity at the critical point of k-clique percolation

    Get PDF
    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social- and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.Comment: 20 pages, 6 figure
    • 

    corecore