3,205 research outputs found

    Mapping haptic exploratory procedures to multiple shape representations

    Get PDF
    Research in human haptics has revealed a number of exploratory procedures (EPs) that are used in determining attributes on an object, particularly shape. This research has been used as a paradigm for building an intelligent robotic system that can perform shape recognition from touch sensing. In particular, a number of mappings between EPs and shape modeling primitives have been found. The choice of shape primitive for each EP is discussed, and results from experiments with a Utah-MIT dextrous hand system are presented. A vision algorithm to complement active touch sensing for the task of autonomous shape recovery is also presented

    Tele-autonomous control involving contacts: The applications of a high precision laser line range sensor

    Get PDF
    The object localization algorithm based on line-segment matching is presented. The method is very simple and computationally fast. In most cases, closed-form formulas are used to derive the solution. The method is also quite flexible, because only few surfaces (one or two) need to be accessed (sensed) to gather necessary range data. For example, if the line-segments are extracted from boundaries of a planar surface, only parameters of one surface and two of its boundaries need to be extracted, as compared with traditional point-surface matching or line-surface matching algorithms which need to access at least three surfaces in order to locate a planar object. Therefore, this method is especially suitable for applications when an object is surrounded by many other work pieces and most of the object is very difficult, is not impossible, to be measured; or when not all parts of the object can be reached. The theoretical ground on how to use line range sensor to located an object was laid. Much work has to be done in order to be really useful

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed

    Improved Normal and Shear Tactile Force Sensor Performance via Least Squares Artificial Neural Network (LSANN)

    Get PDF
    This paper presents a new approach to the characterization of tactile array sensors that aims to reduce the computational time needed for convergence to obtain a useful estimator for normal and shear forces. This is achieved by breaking up the sensor characterization into two parts: a linear regression portion using multivariate least squares regression, and a nonlinear regression portion using a neural network as a multi-input, multi-output function approximator. This procedure has been termed Least Squares Artificial Neural Network (LSANN). By applying LSANN on the 2nd generation MIT Cheetah footpad, the convergence speed for the estimator of the normal and shear forces is improved by 59.2% compared to using only the neural network alone. The normalized root mean squared error between the two methods are nearly identical at 1.17% in the normal direction, and 8.30% and 10.14% in the shear directions. This approach could have broader implications in greatly reducing the amount of time needed to train a contact force estimator for a large number of tactile sensor arrays (i.e. in robotic hands and skin).United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) programSingapore. Agency for Science, Technology and Researc

    Computer Architecture for Object Recognition and Sensing

    Get PDF
    The notion of using many, most likely different, sensory subsystems in a computer object recognition system immediately provokes several questions: - How will multiple sensors be used in conjunction? - What object qualities are best described by which sensor, and how is sensor utilization optimized? - To what extent does the information provided by each sensor overlap with that provided by others, and how then is this used

    Feature-based hybrid inspection planning for complex mechanical parts

    Get PDF
    Globalization and emerging new powers in the manufacturing world are among many challenges, major manufacturing enterprises are facing. This resulted in increased alternatives to satisfy customers\u27 growing needs regarding products\u27 aesthetic and functional requirements. Complexity of part design and engineering specifications to satisfy such needs often require a better use of advanced and more accurate tools to achieve good quality. Inspection is a crucial manufacturing function that should be further improved to cope with such challenges. Intelligent planning for inspection of parts with complex geometric shapes and free form surfaces using contact or non-contact devices is still a major challenge. Research in segmentation and localization techniques should also enable inspection systems to utilize modern measurement technologies capable of collecting huge number of measured points. Advanced digitization tools can be classified as contact or non-contact sensors. The purpose of this thesis is to develop a hybrid inspection planning system that benefits from the advantages of both techniques. Moreover, the minimization of deviation of measured part from the original CAD model is not the only characteristic that should be considered when implementing the localization process in order to accept or reject the part; geometric tolerances must also be considered. A segmentation technique that deals directly with the individual points is a necessary step in the developed inspection system, where the output is the actual measured points, not a tessellated model as commonly implemented by current segmentation tools. The contribution of this work is three folds. First, a knowledge-based system was developed for selecting the most suitable sensor using an inspection-specific features taxonomy in form of a 3D Matrix where each cell includes the corresponding knowledge rules and generate inspection tasks. A Travel Salesperson Problem (TSP) has been applied for sequencing these hybrid inspection tasks. A novel region-based segmentation algorithm was developed which deals directly with the measured point cloud and generates sub-point clouds, each of which represents a feature to be inspected and includes the original measured points. Finally, a new tolerance-based localization algorithm was developed to verify the functional requirements and was applied and tested using form tolerance specifications. This research enhances the existing inspection planning systems for complex mechanical parts with a hybrid inspection planning model. The main benefits of the developed segmentation and tolerance-based localization algorithms are the improvement of inspection decisions in order not to reject good parts that would have otherwise been rejected due to misleading results from currently available localization techniques. The better and more accurate inspection decisions achieved will lead to less scrap, which, in turn, will reduce the product cost and improve the company potential in the market
    corecore