30 research outputs found

    Computation of Real Radical Ideals by Semidefinite Programming and Iterative Methods

    Get PDF
    Systems of polynomial equations with approximate real coefficients arise frequently as models in applications in science and engineering. In the case of a system with finitely many real solutions (the 00 dimensional case), an equivalent system generates the so-called real radical ideal of the system. In this case the equivalent real radical system has only real (i.e., no non-real) roots and no multiple roots. Such systems have obvious advantages in applications, including not having to deal with a potentially large number of non-physical complex roots, or with the ill-conditioning associated with roots with multiplicity. There is a corresponding, but more involved, description of the real radical for systems with real manifolds of solutions (the positive dimensional case) with corresponding advantages in applications. The stable and practical computation of real radicals in the approximate case is an important open problem. Theoretical advances and corresponding implemented algorithms are made for this problem. The approach of the thesis, is to use semidefinite programming (SDP) methods from algebraic geometry, and also techniques originating in the geometry of differential equations. The problem of finding the real radical is re-formulated as solving an SDP problem. This approach in the 00 dimensional case, was pioneered by Curto \& Fialkow with breakthroughs in the 00 dimensional case by Lasserre and collaborators. In the positive dimensional case, important contributions have been made of Ma, Wang and Zhi. The real radical corresponds to a generic point lying on the intersection of boundary of the convex cone of semidefinite matrices and a linear affine space associated with the polynomial system. As posed, this problem is not stable, since an arbitrarily small perturbation takes the point to an infeasible one outside the cone. A contribution of the thesis, is to show how to apply facial reduction pioneered by Borwein and Wolkowicz, to this problem. It is regularized by mapping the point to one which is strictly on the interior of another convex region, the minimal face of the cone. Then a strictly feasible point on the minimal face can be computed by accurate iterative methods such as the Douglas-Rachford method. Such a point corresponds to a generic point (max rank solution) of the SDP feasible problem. The regularization is done by solving the auxiliary problem which can be done again by iterative methods. This process is proved to be stable under some assumptions in this thesis as the max rank doesn\u27t change under sufficiently small perturbations. This well-posedness is also reflected in our examples, which are executed much more accurately than by methods based on interior point approaches. For a given polynomial system, and an integer d3˘e0d \u3e 0, Results of Curto \& Fialkow and Lasserre are generalized to give an algorithm for computing the real radical up to degree dd. Using this truncated real radical as input to critical point methods, can lead in many cases to validation of the real radical

    Algorithms for Mappings and Symmetries of Differential Equations

    Get PDF
    Differential Equations are used to mathematically express the laws of physics and models in biology, finance, and many other fields. Examining the solutions of related differential equation systems helps to gain insights into the phenomena described by the differential equations. However, finding exact solutions of differential equations can be extremely difficult and is often impossible. A common approach to addressing this problem is to analyze solutions of differential equations by using their symmetries. In this thesis, we develop algorithms based on analyzing infinitesimal symmetry features of differential equations to determine the existence of invertible mappings of less tractable systems of differential equations (e.g., nonlinear) into more tractable systems of differential equations (e.g., linear). We also characterize features of the map if it exists. An algorithm is provided to determine if there exists a mapping of a non-constant coefficient linear differential equation to one with constant coefficients. These algorithms are implemented in the computer algebra language Maple, in the form of the MapDETools package. Our methods work directly at the level of systems of equations for infinitesimal symmetries. The key idea is to apply a finite number of differentiations and eliminations to the infinitesimal symmetry systems to yield them in the involutive form, where the properties of Lie symmetry algebra can be explored readily without solving the systems. We also generalize such differential-elimination algorithms to a more frequently applicable case involving approximate real coefficients. This contribution builds on a proposal by Reid et al. of applying Numerical Algebraic Geometry tools to find a general method for characterizing solution components of a system of differential equations containing approximate coefficients in the framework of the Jet geometry. Our numeric-symbolic algorithm exploits the fundamental features of the Jet geometry of differential equations such as differential Hilbert functions. Our novel approach establishes that the components of a differential equation can be represented by certain points called critical points

    Verified Error Bounds for Isolated Singular Solutions of Polynomial Systems: Case of Breadth One

    Full text link
    In this paper we describe how to improve the performance of the symbolic-numeric method in (Li and Zhi,2009, 2011) for computing the multiplicity structure and refining approximate isolated singular solutions in the breadth one case. By introducing a parameterized and deflated system with smoothing parameters, we generalize the algorithm in (Rump and Graillat, 2009) to compute verified error bounds such that a slightly perturbed polynomial system is guaranteed to have a breadth-one multiple root within the computed bounds.Comment: 20 page

    On deflation and multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construction uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear in each iteration instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new variables that completely deflates the root in one step. We show that the isolated simple solutions of this new system correspond to roots of the original system with given multiplicity structure up to a given order. Both constructions are "exact" in that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0508

    Punctual Hilbert Schemes and Certified Approximate Singularities

    Get PDF
    In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f =(f_1,…,f_N)∈C[x_1,…,x_n]N=(f\_1, \ldots, f\_N)\in C[x\_1, \ldots, x\_n]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of ff such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use α\alpha-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.Comment: International Symposium on Symbolic and Algebraic Computation, Jul 2020, Kalamata, Franc

    A certified iterative method for isolated singular roots

    Get PDF
    International audienceIn this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1 ,. .. , fN) ∈ C[x1 ,. .. , xn ]^N , we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria
    corecore