4,160 research outputs found

    A weighted rough set based fuzzy axiomatic design approach for the selection of AM processes

    Get PDF
    Additive manufacturing (AM) or 3D printing, as an enabling technology for mass customization or personalization, has been developed rapidly in recent years. Various design tools, materials, machines and service bureaus can be found in the market. Clearly, the choices are abundant, but users can be easily confused as to which AM process they should use. This paper first reviews the existing multi-attribute decision-making methods for AM process selection and assesses their suitability with regard to two aspects, preference rating flexibility and performance evaluation objectivity. We propose that an approach that is capable of handling incomplete attribute information and objective assessment within inherent data has advantages over other approaches. Based on this proposition, this paper proposes a weighted preference graph method for personalized preference evaluation and a rough set based fuzzy axiomatic design approach for performance evaluation and the selection of appropriate AM processes. An example based on the previous research work of AM machine selection is given to validate its robustness for the priori articulation of AM process selection decision support

    Integrating Fuzzy Decisioning Models With Relational Database Constructs

    Get PDF
    Human learning and classification is a nebulous area in computer science. Classic decisioning problems can be solved given enough time and computational power, but discrete algorithms cannot easily solve fuzzy problems. Fuzzy decisioning can resolve more real-world fuzzy problems, but existing algorithms are often slow, cumbersome and unable to give responses within a reasonable timeframe to anything other than predetermined, small dataset problems. We have developed a database-integrated highly scalable solution to training and using fuzzy decision models on large datasets. The Fuzzy Decision Tree algorithm is the integration of the Quinlan ID3 decision-tree algorithm together with fuzzy set theory and fuzzy logic. In existing research, when applied to the microRNA prediction problem, Fuzzy Decision Tree outperformed other machine learning algorithms including Random Forest, C4.5, SVM and Knn. In this research, we propose that the effectiveness with which large dataset fuzzy decisions can be resolved via the Fuzzy Decision Tree algorithm is significantly improved when using a relational database as the storage unit for the fuzzy ID3 objects, versus traditional storage objects. Furthermore, it is demonstrated that pre-processing certain pieces of the decisioning within the database layer can lead to much swifter membership determinations, especially on Big Data datasets. The proposed algorithm uses the concepts inherent to databases: separated schemas, indexing, partitioning, pipe-and-filter transformations, preprocessing data, materialized and regular views, etc., to present a model with a potential to learn from itself. Further, this work presents a general application model to re-architect Big Data applications in order to efficiently present decisioned results: lowering the volume of data being handled by the application itself, and significantly decreasing response wait times while allowing the flexibility and permanence of a standard relational SQL database, supplying optimal user satisfaction in today\u27s Data Analytics world. We experimentally demonstrate the effectiveness of our approach

    Information fusion schemes for real time risk assessment in adaptive control systems

    Get PDF
    Intelligent Flight Control System (IFCS) deploys a neural network for in-flight aircraft failure accommodation. Verification and validation (V&V) of adaptive systems is a challenging research problem. Our approach to V&V relies on real-time monitoring of neural network learning. Monitors detect learning anomalies and react to different failure conditions. We investigated data fusion techniques suitable for the analysis of neural network monitors. Monitor outputs are fused into a measure of confidence, indicating the belief in the correctness of failure accommodation mechanism provided by the neural network. We investigated two data fusion techniques, one based on Dempster-Shafer theory and the other based on fuzzy logic. Our techniques were applied to nine flight simulation datasets including those with failures. The monitor fusion algorithms provide unique, meaningful and novel technique for V&V of adaptive flight control systems. Being theoretically sound, the algorithms can be applied to a broad range of other data fusion applications

    Application of dynamic systems family for synthesis of fuzzy control with account of non-linearities

    Get PDF
    Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach

    Application of decision trees and multivariate regression trees in design and optimization

    Get PDF
    Induction of decision trees and regression trees is a powerful technique not only for performing ordinary classification and regression analysis but also for discovering the often complex knowledge which describes the input-output behavior of a learning system in qualitative forms;In the area of classification (discrimination analysis), a new technique called IDea is presented for performing incremental learning with decision trees. It is demonstrated that IDea\u27s incremental learning can greatly reduce the spatial complexity of a given set of training examples. Furthermore, it is shown that this reduction in complexity can also be used as an effective tool for improving the learning efficiency of other types of inductive learners such as standard backpropagation neural networks;In the area of regression analysis, a new methodology for performing multiobjective optimization has been developed. Specifically, we demonstrate that muitiple-objective optimization through induction of multivariate regression trees is a powerful alternative to the conventional vector optimization techniques. Furthermore, in an attempt to investigate the effect of various types of splitting rules on the overall performance of the optimizing system, we present a tree partitioning algorithm which utilizes a number of techniques derived from diverse fields of statistics and fuzzy logic. These include: two multivariate statistical approaches based on dispersion matrices, an information-theoretic measure of covariance complexity which is typically used for obtaining multivariate linear models, two newly-formulated fuzzy splitting rules based on Pearson\u27s parametric and Kendall\u27s nonparametric measures of association, Bellman and Zadeh\u27s fuzzy decision-maximizing approach within an inductive framework, and finally, the multidimensional extension of a widely-used fuzzy entropy measure. The advantages of this new approach to optimization are highlighted by presenting three examples which respectively deal with design of a three-bar truss, a beam, and an electric discharge machining (EDM) process

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    Comparative Study of P&O and Fuzzy MPPT Controllers and Their Optimization Using PSO and GA to Improve Wind Energy System

    Get PDF
    Many academics have recently focused on wind energy installations. WECS (wind energy conversion system) is a renewable energy source that has seen significant development in recent years. Furthermore, compared to the use of power grid supply, the use of the WECS in the water pumping field is a cost-free option (economically). The purpose of this study is to demonstrate a wind-powered pumping mechanism. To obtain the best option, it considers and contrasts four distinct approaches. This research aims to improve the system\u27s performance and the quality of the generated power. The objective of the control of WECS with a permanent magnet synchronous generator (PMSG) is to carefully maximize power generation. Finally, this research employed the fuzzy logic control (FLC) and particle swarm optimization (PSO) algorithms improved using a genetic algorithm (GA). The proposed system\u27s performance was tested using the generated output voltage, current, and power waveforms, as well as the intermediate circuit voltage waveform and generator speed. The provided data show that the control technique used in this study was effective

    Integrated Frequency Control of Microhydro Power Plant Based Flow Valve Control and Electronic Load Controller

    Get PDF
    Frequency instability is one of the main problems in generating Micro-hydro Power Plant (MHPP) with synchronous generator. Governor control using Flow Valve Control (FVC) and Electronic Load Control (ELC) are the common methods that have been applied for MHPP frequency control. However, slow time response and relatively high total harmonic distortion (THD) problems are still exist in the system output when the load vary significantly. FVC is very slow in time response, but produce low THD. In the contrary, ELC very fast in response, but results relatively high THD. This study proposes control techniques for FVC and ELC in order to improve time response and to result a lower THD level. FCV is controlled by Fuzzy-Proportional Integral (Fuzzy-PI) controller to improve the time response, while ELC is improved by Adaptive Neuro Fuzzy Inference System-Proportional Integral Differentia (ANFIS-PID) controller to reduce the load variation effect on THD level. The ELC circuit employs 3 phase rectifier circuit. The ELC circuit is driving current through load bus to load ballast. These integrated controller is simulated by using Matlab Simulink. Results of simulation indicate that by deploying the proposed controller on the FVC and the ELC, respectively and by integrating them all together, the time response and the THD of the MHPP output are improved in the load changes

    MODELING AND SIMULATION OF PM MOTOR TESTING ENVIRONMENT TOWARDS EV APPLICATION CONSIDERING ROAD CONDITIONS

    Get PDF
    The electric vehicle (EV) performance testing is an indispensable aspect of the design study and marketing of electric vehicle. The development of a suitable electric motor testing environment for EVs is very significant. On the one hand, it provides a relatively realistic testing environment for the study of the key technologies of electric vehicles, and it also plays an essential role in finding a reasonable and reliable optimization scheme. On the other hand, it provides a reference to the evaluation criteria for the products on the market. This thesis is based on such requirements to model and simulate the PM motor testing environment towards EV applications considering road conditions. Firstly, the requirements of the electric motor drive as a propulsion system for EV applications are investigated by comparing to that of the traditional engine as a propulsion system. Then, as the studying objective of this work, the mathematical model of PMSM is discussed according to three different coordinate systems, and the control strategy for EV application is developed. In order to test the PM motor in the context of an EV, a specific target vehicle model is needed as the virtual load of the tested motor with the dyno system to emulate the real operating environment of the vehicle. A slippery road is one of the severe driving conditions for EVs and should be considered during the traction motor testing process. Fuzzy logic based wheel slip control is adopted in this thesis to evaluate the PM motor performance under slippery road conditions. Through the proposed testing environment, the PM motor can be tested in virtual vehicle driving conditions, which is significant for improving the PM motor design and control

    Advanced control system for stand-alone diesel engine driven-permanent magnetic generator sets

    Get PDF
    The main focus is on the development of an advanced control system for variable speed standalone diesel engine driven generator systems. An extensive literature survey reviews the historical development and previous relevant research work in the fields of diesel engines, electrical machines, power electronic converters, power and electronic systems. Models are developed for each subsystem from mathematical derivations with necessary simplifications made to reduce complexity while retaining the required accuracy. Initially system performance is investigated using simulation models in Matlab/Simulink. The AC/DC/AC power electronic conversion system used employs a voltage controlled dc link. The ac voltage is maintained at constant magnitude and frequency by using a dc-dc converter and a fixed modulation ratio VSI PWM inverter. The DC chopper provides fast control of the output voltage by dealing efficiently with transient conditions. A Variable Speed Fuzzy Logic Core (VSFLC) controller is combined with a classical control method to produce a novel hybrid controller. This provides an innovative variable speed control that responds to both load and speed changes. A new power balance based control strategy is proposed and implemented in the speed controller. Subsequently a novel overall control strategy is proposed to co-ordinate the hybrid variable speed controller and chopper controller to provide overall control for both fast and slow variations of system operating conditions. The control system is developed and implemented in hardware using Xilinx Foundation Express. The VHDL code for the complete control system design is developed and the designs are synthesised and analysed within the Xilinx environment. The controllers are implemented with XC95108-PC84 and XC4010-PC84 to provide a compact and cheap control system. A prototype experimental system is described and test results are obtained that show the combined control strategy to be very effective. The research work makes contributions in the areas of automatic control systems for diesel engine generator sets and CPLD/FPGA application that will benefit manufacturers and consumers.EPSR
    corecore