4,018 research outputs found

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Development of a machine vision system for automated structural assembly

    Get PDF
    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position

    Part clamping and fixture geometric adaptability for reconfigurable assembly systems.

    Get PDF
    Masters of Science in Mechanical Engineering. University of KwaZulu-Natal. Durban, 2017.The Fourth Industrial Revolution is leading towards cyber-physical systems which justified research efforts in pursuing efficient production systems incorporating flexible grippers. Due to the complexity of assembly processes, reconfigurable assembly systems have received considerable attention in recent years. The demand for the intricate task and complicated operations, demands the need for efficient robotic manipulators that are required to manoeuvre and grasp objects effectively. Investigations were performed to understand the requirements of efficient gripping systems and existing gripping methods. A biologically inspired robotic gripper was investigated to establish conformity properties for the performance of a robotic gripper system. The Fin Ray Effect® was selected as a possible approach to improve effective gripping and reduce slippage of component handling with regards to pick and place procedures of assembly processes. As a result, the study established the optimization of self-adjusting end-effectors. The gripper system design was simulated and empirically tested. The impact of gripping surface compliance and geometric conformity was investigated. The gripper system design focused on the response of load applied to the conformity mechanism called the Fin Ray Effect®. The appendages were simulated to determine the deflection properties and stress distribution through a finite element analysis. The simulation proved that the configuration of rib structures of the appendages affected the conformity to an applied force representing an object in contact. The system was tested in real time operation and required a control system to produce an active performance of the system. A mass loading test was performed on the gripper system. The repeatability and mass handling range was determined. A dynamic operation was tested on the gripper to determine force versus time properties throughout the grasping movement for a pick and place procedure. The fluctuating forces generated through experimentation was related to the Lagrangian model describing forces experienced by a moving object. The research promoted scientific contribution to the investigation, analysis, and design of intelligent gripping systems that can potentially be implemented in the operational processes of on-demand production lines for reconfigurable assembly systems

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Automation considerations for a manufacturing system

    Get PDF
    This thesis examines the present manufacturing system of Apollo Valve Company, a solenoid control valves manufacturing. After analyzing the present system, the automation considerations and proposed new system were recommended. Chapter 1 presenti the background material of automation and manufacturing system. The development of the automated factory is also included. The plant layout, organization, and departments functions of the present system are briefly described in the Chapter 2. Analysis of the present manufacturing system by the production volume, by plant layout, and by the manufacturing operations, is discussed in Chapter 3. Proposed automation considerations and improvements, such as group technology (GT), computer-aided process planning (CAPP), computer-aided manufacturing (CAM), automatic assembly and testing, packing, and flexible manufacturing system (FMS), are presented in the Chapter 4. The last chapter, the conclusions are discussed and the new manufacturing system is recommended
    corecore